Practical work N°2. Preparation of aqueous solutions in chemistry

Introduction

Solution: A solution is a homogeneous mixture of two or more pure substances that do not interact with each other. A solution is formed when a substance, called a solute, is dissolved in another substance, called the solvent.

Solute: Substance which dissolves in a solution.

Solvent: Substance which dissolves another to form a solution (water)

Ways of expressing concentration

There are numerous ways to describe the concentration of a solution, and they are a useful ways to describe solutions concentrations in chemistry reactions.

Molarity	$C_{\rm M} = \frac{n_{solute}}{V_{solution}} \; (\frac{mol}{L})$
Mass concentration	$T = \frac{m_{solute}}{V_{solution}} \left(\frac{g}{L}\right)$
Normality	$C_{N} = \frac{n_{eq.g}}{V_{solution}} \left(\frac{eq.g}{L} \right)$
Molality	$C_{\rm m} = \frac{n_{solute}}{m_{solvent}} \; (\frac{mol}{Kg})$

Relation between Normality and Molarity

Normality and Molarity are two important and commonly used expressions in chemistry. Both are used to indicate the quantitative measurement of a substance. But what relation does Molarity have with Normality?

$$C_N = \mathbf{Z} C_M$$

Where Z is a constant with a number of states

- For acid: Z is the number of H^+ protons that the acid can lose. (HCI : Z = 1) (H₂SO₄: Z = 2).
- **For base :** Z is the number of hydroxides − OH⁻ that the base can lose (NaOH : Z=1; BaOH₂ : Z=2)
- **For oxidation and reduction:** Z is the number of transferred electrons.

$$[MnO_4^- + 5e_- + 8OH_- Mn^{2+} + 4H_2O]$$
: Z = 5

For salts: Z is the number of metal atoms in its valence.

$$[Al_2(SO_4)_3 \ 2Al_3 + + 3SO_4^2] : Z = 2 \times (+3) = 6$$

Objective of the experiment

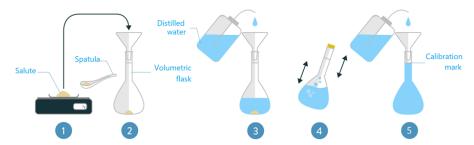
- 1. To identify and use the equipment and tools required for preparing solutions.
- 2. To prepare a sodium hydroxide (NaOH) solution by dissolution.
- **3.** To dilute a hydrochloric acid (HCl) solution.

Materials and Chemicals

Materials	Chemicals
Graduated pipette or graduated cylinder	Distilled water
Volumetric flask	Hydrochloric acid (HCI)
Spatula - Watch Glass - Funnel	Sodium hydroxide (NaOH)
Analytical balance	

Procedure

1. Preparation of solution from a solid:


This section describes how to prepare a chemical solution using a solid dissolved in a liquid. We need to calculate the mass of the solid required using the equation: $\mathbf{m} = \mathbf{C_M} \cdot \mathbf{M} \cdot \mathbf{V}$ Question: Calculate and describe how to prepare 100 ml of sodium hydroxide (NaOH) solution with a molar concentration of 0.1 mol/L ($\mathbf{M_{NaOH}} = 40 \text{ g/mol}$)?

Calculate the mass of sodium hydroxide (NaOH) needed to prepare 100 ml of 0.1 mol/L
 NaOH solution.

$$C_{\mathrm{M}} = rac{n}{V} = rac{\mathrm{m}}{M.V}
ightarrow \mathrm{m} = C_{\mathrm{M}}.M.V$$
 $m_{NaOH}(\mathrm{g}) = C_{\mathrm{local}}(rac{mol}{L}).M_{NaOH}(rac{g}{mol}).V_{\mathrm{local}}(L)$
 $m_{NaOH}(\mathrm{g}) = 0.1 imes 40 imes 0.1 = 0.4 \mathrm{g}$

- Weight the mass of 0.4 g of NaOH.
- Fill a clean 100 mL volumetric flask at third of it with water.

- Add 0.4g of NaOH to this volumetric flask using a funnel.
- Stir the mixture until the NaOH is completely dissolved.
- Completely fill the volumetric flask with distilled water to the measuring line.
- Close the volumetric flask, then mix to obtain homogeneous solution of NaOH.

Scheme 1. How to prepare solutions from solid

2. Preparation of solution from a liquid:

This section explains how to prepare a chemical solution through dilution method. We need to calculate the volume of the starting solution required using with the equation :

$$C_i . V_i = C_f . V_f \rightarrow V_i = \frac{C_f . V_f}{C_i}$$

Question: Calculate and describe how to prepare 100 ml of 0.1 mol/L hydrochloric acid HCI from concentarted HCl solution?

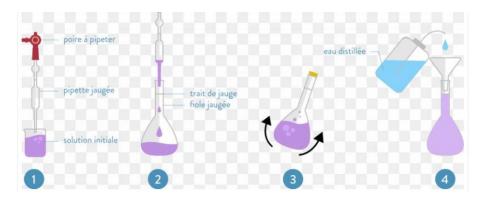
- Read the information on the concentrated HCl(commercial); the density is 1.18, the purity rate is 37%, and the molar mass is 36.5 g/mol.
- Calculate the mass of the concentrated HCl.

We have d=1.18 so $\rho=1.18$ Kg/L **i.e.** one L of HCI weighs 1180 g.

- Determine the amount of pure concentrated HCl in grammes.

$$m_{HCl}(\text{Concentrated}) = \frac{1180 \times 37}{100} = 436.6 \text{ (g)}$$

- Determining the concentration of concentrated HCl.


$$C_{HCl} = \frac{n_{HCl}}{V} = \frac{m_{HCl}}{M_{HCl} \cdot V} = \frac{436.6}{36.6 \times 1} = 11.96 \left(\frac{\text{mol}}{\text{L}}\right)$$

- Calculating the volume required of concentrated HCl to prepre the needed solution

$$V_{HCl} = \frac{C_{\rm f} \cdot V_{\rm f}}{C_{HCl}} = \frac{0.1 \times 100}{11.96} = 0.83 \text{ (ml)}$$

- Fill a clean 100 mL volumetric flask at third of it with water.

- Take out 0.83 mL of concentrated HCl using the graduated pipette.
- Transfer it to the volumetric flask.
- Completely fill the volumetric flask with distilled water to the measuring line.
- Close the volumetric flask, then mix to obtain homogeneous solution of HCl.

Scheme 2. How to prepare solutions through dilution

Given

KOH: (M = 56.11 g/mol - 85%)

 H_2SO_4 : (M = 98 g/mol - d = 1,18 - 96%)

CH₃COOH: (M = 60 g/mol - d = 1.05)