1

Abdelhafid Boussouf University Center of Mila

Structure of Computers and Applications

1st year ST – ENG & LMD

■Part 2: The basics of Algorithm and Program

Courses 5_6: Concept of an Algorithm/Program

By

Dr. Farouk KECITA

Academic year: 2025/2026

□ HOW TO WRITE ALGORITHMS?

- > Step 1: Define your algorithms input: Many algorithms take in data to be processed, i.e. to calculate the area of rectangle input may be the rectangle height and rectangle width
- Step 2: **Define the variables**: Algorithm's variables allow you to use it for more than on place. We can define two variables for rectangle height and rectangle width as HEIGHT and WIDTH (or H & W). We should use meaningful variable name e.g. instead of using H & use HEIGHT and WIDTH as variable name.
- ➤ Step 3: Outline the algorithm's operations: Use input variable for computation purpose e.g. to find area of rectangle multiply the HEIGHT and WIDTH variable and store the value in new variable (say) AREA.
 - Step 4: Output the results of your algorithm's operations: In case of area of rectangle output will be the value stored in variable AREA. if the input variables described a rectangle with a HEIGHT of 3 and a WIDTH of 5, the output is 15.

□ Examples of Algorithm

Problem 01:

Write an algorithm to read two numbers and find their sum.

Inputs to the algorithm:

First Number1.

Second Number 2.

Expected output:

Sum of the two numbers.

Algorithm:

Step1: Start

Step2: Read\input the first Number1 and the second Number2.

Step3: Sum= Number1+Number2 // calculation of sum

Step4: Print Sum

Step5: End

□ Examples of Algorithm

Problem 02: Write an algorithm to find the value of A, B, C from the following

equations: $A = X^2 + 2Y$, B = 2X-3A, $C = A^2-XB$

Where X and Y represents a circle area and circumference respectively. Input the radius (R) and print the value of A, B and C.

Algorithm:

Step 1. Start

Step2. Input Radius (R)

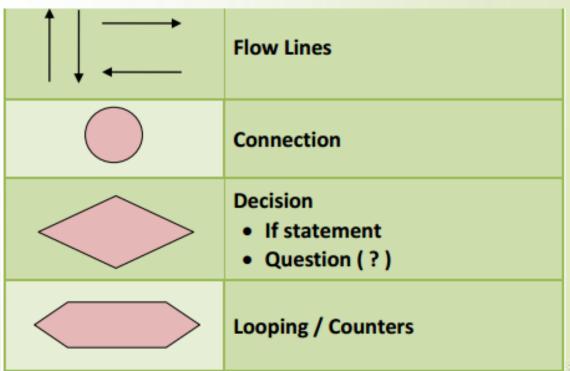
Step3. Put PIE = 3.14

Step4. Find Area (X), $X = R^2 *PIE$

Step5. Find Circumference (Y), Y = 2*R*PIE

Step6. Find A, $A = X^2 + 2 Y$

Step7. Find B, B=2*X-3*A


Step8. Find C, C=A^2-X*B

Step9. Print A, B, C

Step 10. End

- **□** Representation of Algorithms (FLOWCHART)
- ➤ Is diagrammatic /Graphical representation of sequence of steps to solve a problem
- They are widely used in multiple fields to document, study, plan, improve and communicate often complex processes in clear, easy-to-understand diagrams.
- To draw a flowchart following standard symbols are use

Shape	Operation
	Start or End
	Input / Output data Read or Input Print
	Processing / Storing Addition(+), Subtraction(-), Multiplication(*), Division(/), Expontiation(^), Store a value (Put)

□ Representation of Algorithms (FLOWCHART)

In general, we can divide flowcharts to a four shapes (charts):

- 1. Simple sequence charts
- 2. Branched charts.
- 3. Single loop charts.
- 4. Multi-loops (nested loops) charts.
- >/1 .Simple sequence charts

The events arrangement of this type is as straight sequence from the beginning of the program to the end (Event-1 to Event-n), so this type of charts does not have any **branches** or **loops** (see figure (1-1)).

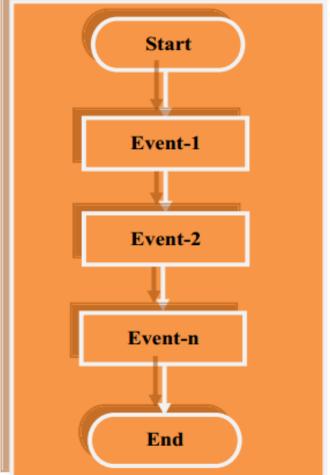


Figure (1-1): A simple sequence chart

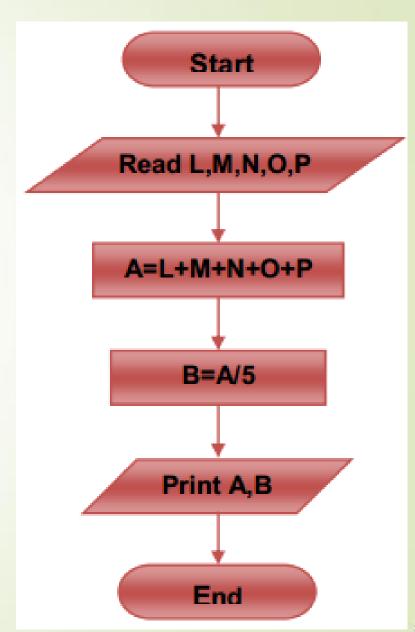
> 1 .Simple sequence charts

Example:

Write an algorithm and draw a flowchart to read five numbers and find their sum and average. Print the results. **Solution:**

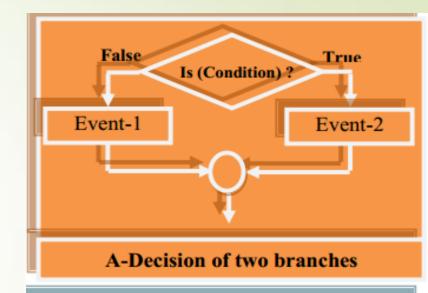
Algorithm:

Step1. Start


Step2. Read L, M, N, O, P

Step3. Find Sum (A), A=L+M+N+O+P

Step4. Find Average (B), B = A / 5


Step5. Print A, B

Step6. End

2. Branched charts

- ✓ The need for the branching is to make decisions or comparison between two or more choices.
- ✓ Each choice will flow in different way (branch).
- ✓ Generally the branched charts may take one of the two forms shown in figure(2-1):
- a Decision of two branched: The comparison in this type depends on: Is (condition) was satisfied (True) or not (False)
- **b. Decision of three branched**: The comparison in this type depends on: If (variable) was equal(=), greater than(>) or less than(<) any value?

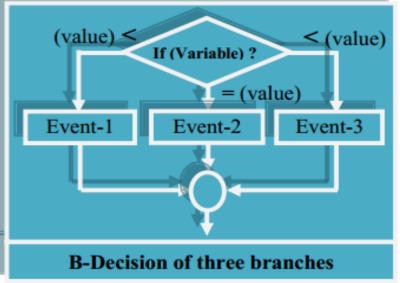


Figure (2-1): Branched charts

> 2. Branched charts

Example 01: Write an algorithm and draw a flowchart to find the value

of the function F(X). Input X and print F(X) to each value of X.

Solution: Algorithm:

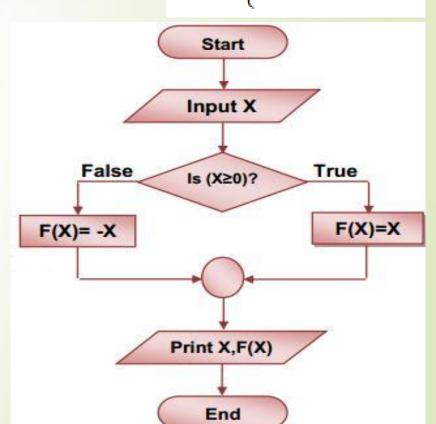
Step1. Start

Step2. Input x

Step3. Is $x \ge 0$?

if "True" then continue.

if "False" then go to step-5.


Step4. Find F(x), F(x) = x: Goto step-6

Step5. Find F(x), F(x) = -x.

Step6. Print x, F(x)

Step7. End

Plowchart:

2. Branched charts

Example 02: Write an algorithm and draw a flowchart to evaluate W from $W = \{\sin(X) + 5 : X = 0\}$

the equation. Input X and print the value of W for each value of X.

Solution: Algorithm:

step1. Start

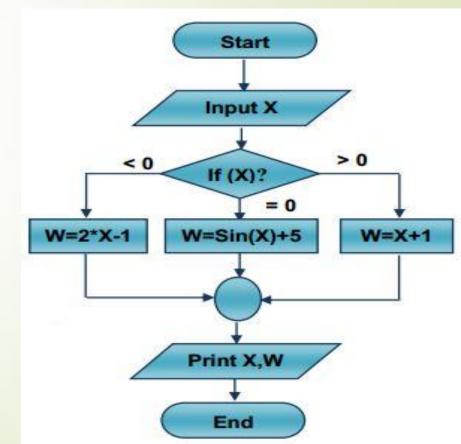
step2. Input x

step3. If x > 0 then continue

If x = 0 then go to step-5

If x < 0 then go to step-6

step4. Find W, W = X+1: go to step-7


step5. Find W, W = Sin(X) + 5: go to step-7

step6. Find W, W = 2*X-1

step7. Print X, W

step8. End

Flowchart:

X+1

2X-1

: X > 0

:X<0

- **3. Single loop charts**
- ✓ These charts are used when we need to **repeat** an operation or **group** of operations to specific number of times.
- ✓ These types of charts are used to **create the counters**.

What is counter?

Counter is used to repeat an operation or group of operations in specific number of times.

To make a counter we must know the following values:

- Counter name [literal value], (Let: I)
- Initial (Starting) [numerical value], (Let: S)
- End (Final) [numerical value], (Let: E)
- Step size [numerical value], (Let: Δ)

Counter can be designed using one of two forms:

A- Conventional form. B- General form.

> 3. Single loop charts

A- Conventional form:

- ✓ This form is the simplest because all counter values
- (I, S, E, Δ) are mentioned in the same line (For I=S to E step Δ).
- ✓ At **starting** we use the looping shape (listed previously in table (1-1)) and at the **ending** use the **connection shape** putting a number inside it to know the **loop number**.
- The operation we want to **repeat** (which is containing **one** or **more** instructions) can be putted in between the **start** and **end** of the **counter**.

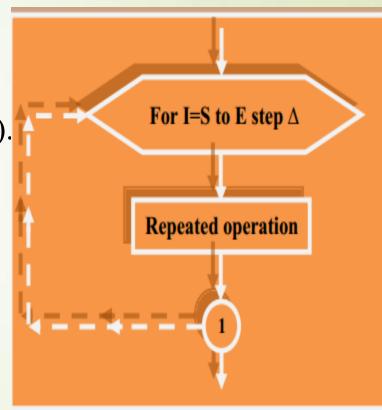


Figure (3-1): Counter: Conventional-form charts

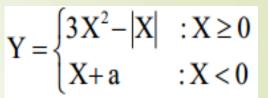
A- Conventional form:

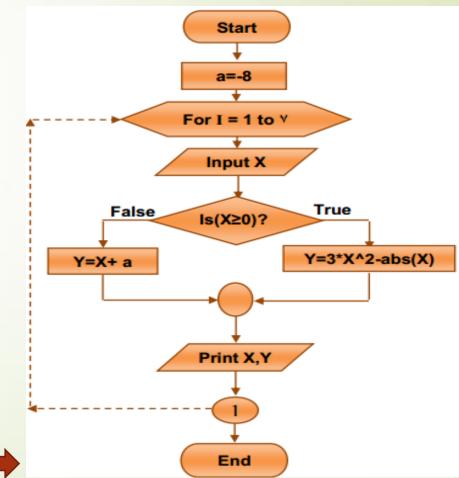
Example: Write an algorithm and draw a flowchart to evaluate Y from

the equations for seven entering values of X. If you know that a = -8, print

The value of Y for each value of X. Use the conventional form.

Solution: Algorithm:


- 1.Start
- 2. Put a = -8
- 3. For I=1 To 7 step 1
- 4. Input X
- 5. Is X≥0 ?


If "True" then continue

If "False": then go to Step-7

- 6. Find Y, $Y=3*X^2-abs(X)$: go to step-8
- 7. Find Y, Y = X + a
- 8. Print X,Y
- 9. Next I

10. End

> 3. Single loop charts

B- General form:

- ✓ This form is the complex because all counter values (I, S, E, Δ) are mentioned in the different line.
- At starting we put the starting value (I=S) and at the end we will put a condition to represent the end point (I \geq E).
- The repeated operation will placed in between the start and end of the counter.
 - A backward dashed line will return when the condition satisfied and in the middle of it the increasing (or decreasing) value will placed as $(I=I+\Delta)$ as shown in figure (4-1)

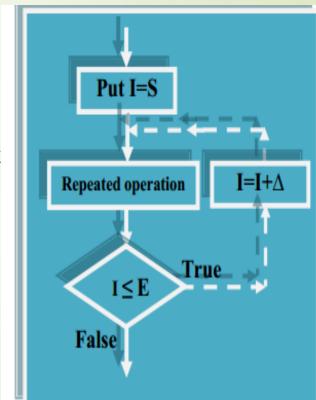
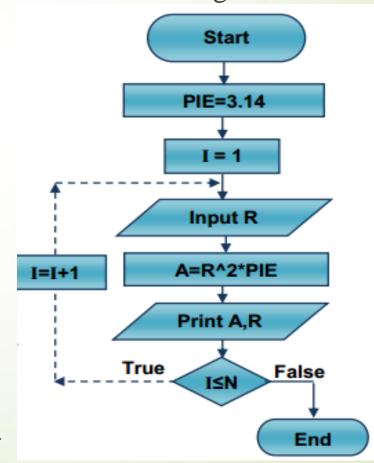


Figure (4-1): Counter: General-form charts

lote: In conventional form if $\Delta=1$ we can not write it but the genera form we write it.

B- General form:

Example : Write an algorithm and draw a flowchart to find the area of (N) circles. Input the circles and print the result. Use the general form


Solution: Algorithm:

- 1. Start
- 2/Put PIE = 3.14
- 3. Put I = 1
- 4. Input Radius (R)
- 5. Find Area (A), A=R^2*PIE
- 6. Print R, A
- 7. Is $I \le N$?

If "True" Then I=I+1:Goto step-4

If "False" Then continue

8. End

4. Multi-loops (nested loops) charts

- ✓ Its so called because it contains many loops.
- ✓ These loops are nested together but without any intersections between these loops.

✓ As shown in figure (5-1), the loop number-1 is called "inner loop" and the loop number-2 is called the outer loop the priority of execution will be to the inner loops

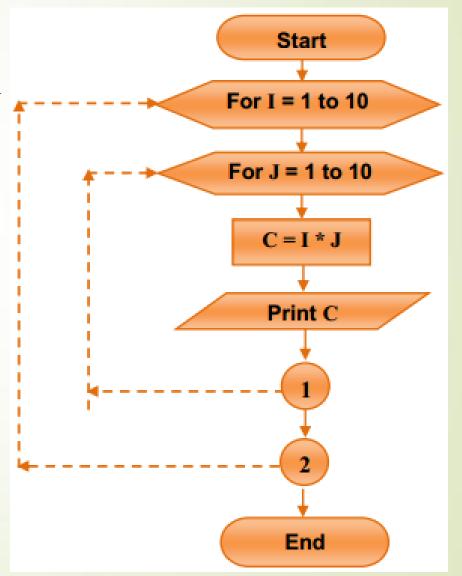
then sequentially to the outer loops.

Note:

The intersection will be caused when end

the outer loops before the inner or vice a versa...

Figure (5-1): Nested loops chart


4. Multi-loops (nested loops) charts

Example:

Write an algorithm and draw a flowchart to find an print the multiplication table from 1 to 10.

Solution: Algorithm:

- 1.Start
- 2. For I=1 to 10
- 3. For J=1 to 10
- 4. Find C, C= I * J
- 5. Print C
- 6. Next J
- 7. Next I
- 8. End

6- Concept of an Algorithm/Program

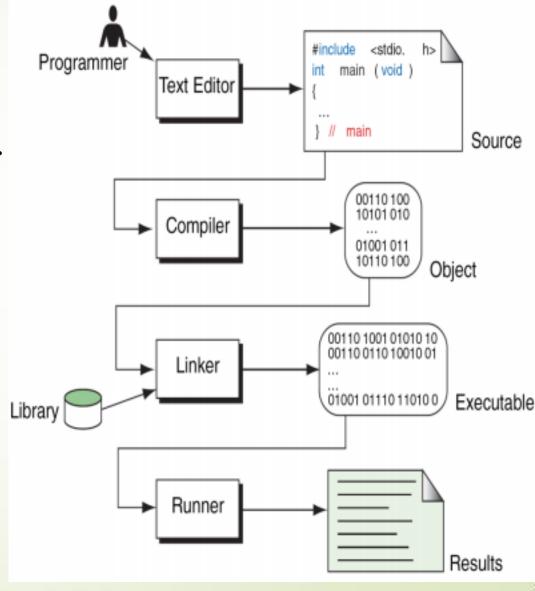
6.2_ Coding (Program)

If you are to instruct the computer to accomplish certain task, you need to specify the detailed steps an then translate them into a **computer/programming language**

- A program is an algorithm for solving some problem which is written using some computer/programming language— so that it can be understood by the computer.
- A programming language is a set of words and symbols and codes that enables human to write a computer program.
- > Though similar, the program and the algorithm are not the same:
 - 1. The algorithm can be written using **human language** (English, Spanish, etc). But the computer does not understand it. The program must be written using **computer language** (C, C++, Python, Javascript, etc.). It can be understood by the computer. So an *algorithm needs to be converted to a program for the computer*.
 - 2. The program follows rigid formats and rules. 3. Algorithms predate computers

66- Concept of an Algorithm/Program

6.2_ Coding


What are the steps involved in the creation and running of a program?

- > Writing and editing the program using Text editor (source code).
- > Save the code with an appropriate file name and file extension.
- Compile the program using any compiler, which translates the code into machine-readable instructions.
- > Linking the program with the required library modules(object file)
- **Executing** the program. (. Exe file)

6- Concept of an Algorithm/Program

6.3_Executing program:

- Execution is the last step.
- In this step program starts execution.
- Its instructions start working and output of the program display on the screen.

