Ministry of Higher Education and Scientific Research University Center of Mila Institute of Mathematics and Computer Science Department of Computer Science Master 2 I2A – Big Data 2025/2026

Chapter 1 Introduction to Big Data

Presented by: Dr. Brahim Benabderrahmane

Table of Contents

- Motivations
- **O2** Defining Big Data
- **O3** Data Sources
- Challenges of Big Data
- **O5** The 5 Vs of Big Data
- **06** Memory Hierarchy & Distributed Storage
- **O7** Disciplines of Big Data

01 Motivations

Explosion of Digital Data

Data Generation

Massive growth in data generation across all sectors

IoT & Sensors

Smart devices, GPS signals, health trackers

Billions of daily Google searches

Transactions

E-commerce, banking, digital payments

500M+ tweets per day, billions of Facebook and Instagram posts

Petabytes of new data created

Real-World Example: Data Growth at Scale

- ~99,000 queries every second
- 8.5 billion searches per day

- ~95 million photos & videos shared daily
- Over 2 billion active users

YouTube

- 500 hours of video uploaded every minute
- Billions of daily views

TikTok

- 34 million videos uploaded every day1
- billion monthly active users

Why Traditional Tools Are Not Enough

Scalability limits	RDBMS designed for single-server or small clusters
Rigid schema	Difficult to handle semi-structured or unstructured data (e.g., videos, social media text)
Performance bottlenecks	Can't efficiently manage petabytes of data
Real-time processing	RDBMS are optimized for transactions, not high- velocity streams
Cost & complexity	Scaling vertically (bigger servers) is expensive and limited

02

Definition of Big Data

Definition of Big Data

Big Data refers to **extremely large** and **complex** datasets that cannot be efficiently **stored**, **processed**, or **analyzed** using traditional database systems and tools.

It also encompasses the **hardware** and **software** solutions developed to manage such data at scale, as well as the scientific and industrial field dedicated to studying methods for handling **massive**, **diverse**, and **fast-growing** information.

Big Data is not only about the **size** of the data, but also about its **variety**, **velocity**, and the ability to extract valuable insights from it.

Large, Complex Datasets Beyond Traditional DBMS

Too large for single-server databases

Structured, semi-structured, and unstructured data

RDBMS cannot scale horizontally

Solutions

Hadoop, Spark, and NoSQL for massive data

Types of Data in Big Data

Structured:

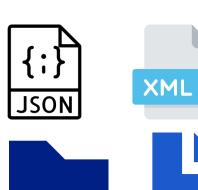
Organized in rows/columns (e.g., relational databases, financial records)

Semi-Structured:

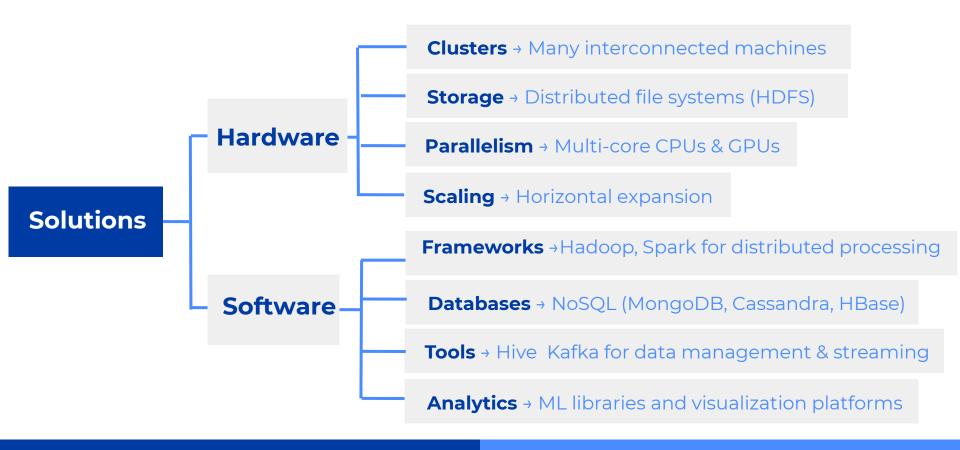
Flexible format with tags/markers (e.g., XML, JSON, log files)

Unstructured:

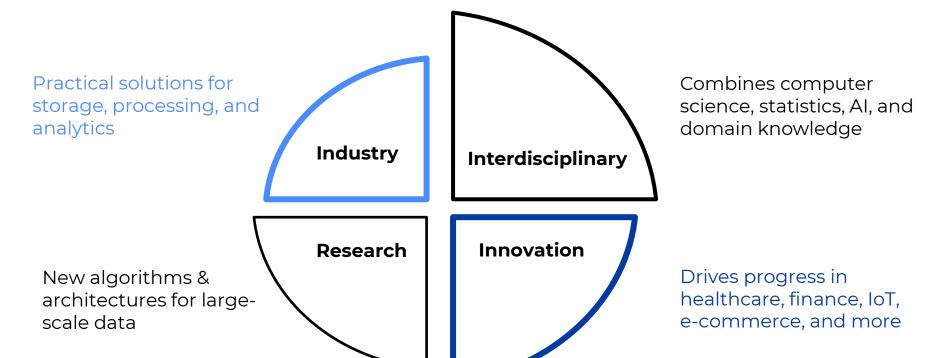
No predefined model (e.g., videos, images, social media posts, emails)



Hardware & Software Solutions for Big Data



Big Data as a Field of Study



03 Data Sources

Social Media as a Source of Big Data (2025)

Global data size

In 2025, 181 zettabytes generated worldwide:

181,000 EB (exabytes)

181,000,000 PB (petabytes)

181,000,000,000 TB (terabytes)

181,000,000,000,000 GB (gigabytes)

- Users → ~5.24B people on social media
- **Facebook** → ~3.07B monthly active users
- Instagram → ~2B users, ~95M posts shared daily
- TikTok → ~1.8B users, ~34M new videos uploaded daily
- X (Twitter) → ~500M tweets per day
- YouTube → >500 hours of video uploaded every minute
- **Streaming platforms** → Netflix, Spotify = petabytes of viewing/listening data daily

E-Commerce & Transactions as Big Data Sources (2025)

Online shopping	Global e-commerce sales expected to exceed \$6.3 trillion in 2025
Amazon	Millions of transactions daily, generating petabytes of purchase & clickstream data
Digital payments	Billions of credit card and mobile wallet transactions (PayPal, Apple Pay) every day
Banking	Real-time financial records and fraud detection systems rely on massive datasets
Impact	Transactional data is structured, but huge volume and velocity requires Big Data frameworks

GPS & IoT Sensors: Real-Time Big Data

Scientific Data as a Source of Big Data

Genomics

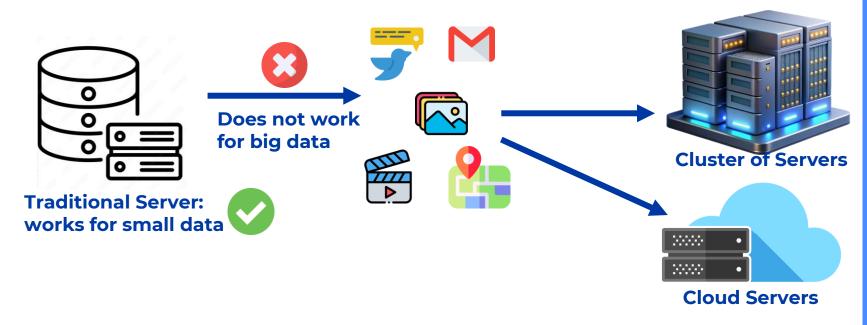
Astronomy

- Climate science → Petabytes from satellites, weather stations, and climate models
- **Genomics** → Human genome sequencing generates ~200 GB per genome; projects involve millions of samples
- **Astronomy** → Telescopes like the Square Kilometre Array expected to produce hundreds of petabytes annually
- Other fields → Particle physics (CERN LHC), oceanography, space missions
- **Impact** → Scientific research creates some of the largest datasets on Earth

04

Challenges of Big Data

From Traditional Servers to Big Data Storage



- Challenge 1: Capacity → Hard drives can't keep up with petabytes/zettabytes
- Challenge 2: Reliability → Hardware failures risk massive data loss
- Challenge 3: Scalability → Expanding vertically (bigger servers) is costly and limited

Distributed Systems & Parallel Computation

Before (Traditional): One big server trying to process everything → Λ bottleneck **After (Distributed):** Many small servers working together → ✓ faster & scalable **Big Task** Task Merged Result **Server Nodes**

Scalable → Add more machines easily

Smaller Tasks

- **Reliable** System survives node failures
- Fast → Parallel execution reduces time

Why We Need New Database Paradigms

Traditional RDBMS	New Paradigms
Works well for structured data (tables, rows, columns)	NoSQL databases (document, key-value, column, graph) → flexible schemas
Strong consistency (ACID transactions)	Distributed databases → scale horizontally across many servers
Struggles with scale, flexibility, and unstructured data	Designed for massive, diverse, real-time data
Example : relational DB trying to handle billions of JSON logs or videos	Examples : MongoDB, Cassandra, HBase, Neo4j

05

The 5 Vs of Big Data

The Five Vs of Big Data

Value

Turning raw data into insights

Volume

Massive amounts of data

Velocity

Veracity

Reliability & quality of data

Variety

Different formats & sources

Speed of data generation & processing

Big Data Characteristic – Volume

Scale → Data measured in petabytes to zettabytes

Examples:

- Netflix stores petabytes of viewing history.
- YouTube gets 500h of video/min

Challenge → Traditional systems can't handle this magnitude

Solution → Distributed storage & scalable architectures (HDFS, data lakes)

Big Data Characteristic – Variety

Structured → Rows & columns (financial records, inventory)

Semi-Structured → Flexible format (XML, JSON, logs)

Unstructured → No fixed schema (images, videos, social media posts, emails)

Challenge → Integrating multiple formats consistently

Solution → NoSQL databases & data lakes for heterogeneous data

Big Data Characteristic – Velocity

Speed → Data generated and updated in real time

Examples:

- 500M tweets/day.
- IoT sensors streaming every second, stock market transactions

Challenge → Processing continuous data flows with low latency

Solution → Real-time frameworks (Kafka, Spark Streaming, Flink)

Big Data Characteristic - Veracity

Uncertainty → Data may be incomplete, inconsistent, or noisy
Examples:

- Fake news on social media.
- sensor errors, duplicated records.

Challenge → Low-quality data leads to unreliable insights.

Solution → Data cleaning, validation, and governance practices.

Big Data Characteristic - Value

Meaning → The ultimate goal is extracting insights, not just storing data.

Examples:

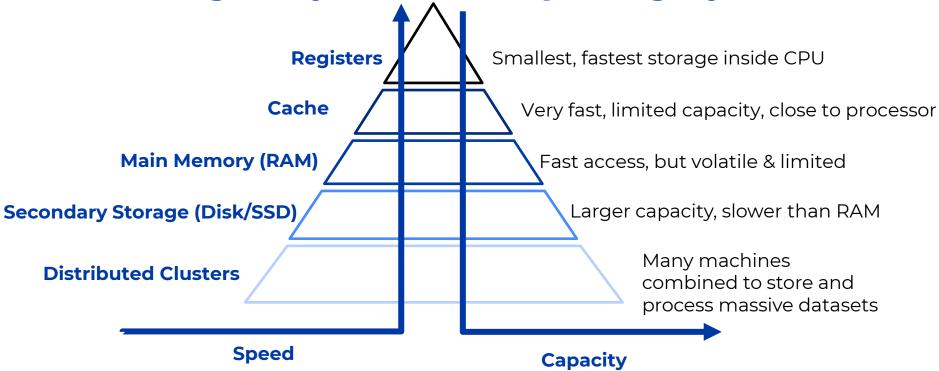
- Netflix recommendations from viewing history.
- Fraud detection in banking.
- Predictive healthcare analytics.

Challenge → Turning raw, messy data into actionable knowledge.

Solution → Advanced analytics, machine learning, and visualization.

06 Memory Hierarchy & Distributed Storage

Storage Layers in Computing Systems



Performance depends on locality of access

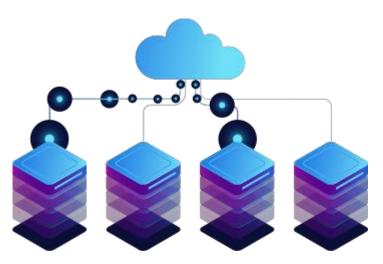
Clusters for Big Data Storage

Definition → A cluster is a group of interconnected machines working as one system **Shared storage** → Data is distributed across nodes, often replicated for reliability

Locality → Each machine stores and processes part of the data

Scalability → Add more nodes to handle larger datasets

Fault tolerance → Cluster keeps working even if some machines fail



Locality Principle in Big Data

Problem: Moving huge datasets across the network is **slow** & **expensive**.

Idea:

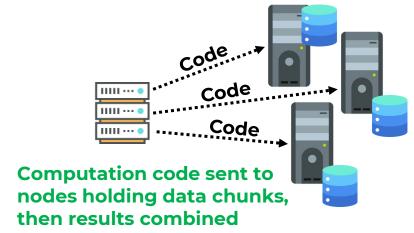
Instead of moving data to computation, **we move computation** close to where data is stored

Implementation → Each node processes its local data chunk

MapReduce → Embodies this principle:

"map tasks run on nodes with data, results are combined later."

Benefit → Reduces network traffic, increases efficiency & scalability.



07

Disciplines of Big Data

Distributed Computing for Big Data

- Batch-oriented framework based on MapReduce
- Uses HDFS for distributed storage
- Designed for fault tolerance and scalability

- In-memory distributed processing engine
- Faster than Hadoop for iterative and interactive tasks
- Rich ecosystem: Spark SQL, MLlib, Streaming, GraphX

Common Goal → Process massive datasets across clusters of machines efficiently.

Dataset split → nodes process chunks → results combined

Parallel computing (HPC, GPU, supercomputers)

HPC (High Performance Computing):

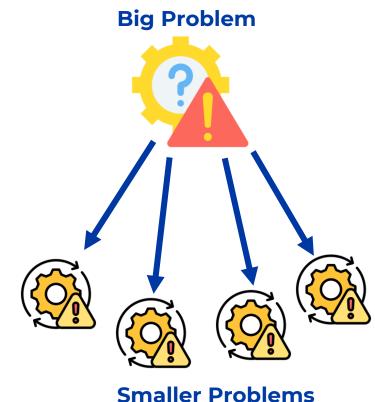
- Large-scale clusters & supercomputers
- Solve scientific & engineering problems (e.g., simulations, climate models)

GPU Computing:

- Thousands of small cores optimized for parallel tasks
- Widely used in AI, deep learning, and graphics processing

Supercomputers:

- Exascale systems (10^18 operations/sec)
- Used for weather prediction, physics, genomics, space exploration



Types of NoSQL Databases

Document Stores

- Store semi-structured data (JSON, BSON, XML)
- Flexible schema, great for hierarchical data
- **Examples**: MongoDB, CouchDB

Key-ValueStores 옥 🔁 🏢

- Simplest NoSQL model: key maps directly to a value
- Ultra-fast lookups, caching, session storage
- Examples: Redis, DynamoDB

NoSQL = Flexible, Scalable, Big Data Ready

Column Stores 📊

- Data stored by columns instead of rows
- Optimized for analytics and largescale queries
- Examples: Cassandra, HBase

Graph Databases 📵

- Data stored as nodes and edges (relationships first-class citizens)
- Perfect for social networks, recommendations, fraud detection
- Examples: Neo4j, ArangoDB

End of Chapter 1