
2025/2026

Software engineering

Chapter 1

Mrs. S.HEDJAZ

Abdelhafid Boussouf
University Center Mila

Faculty of Mathematics and
Computer Science

Department of
Computer Science

Introduction to Software Engineering

http://www.free-powerpoint-templates-design.com/

I. Introduction to the SE

01 History, definitions and objectives

02 Principles of Software Engineering

03 Expected quality of software

04 Software Lifecycle

05 Software Lifecycle Models

03

History, definitions and objectives 01

The term "Software Engineering" was first introduced at a conference in Germany in 1968

in response to the software crisis

Software crisis

The construction of the

software was very

expensive

(Average overrun 70%)

Delivery deadlines were not

met

(Average overrun 50%)

Difficult to use, maintain, or

scale

(40% - 70% of the software

cost)

Software

development

was in crisis Software does not meet

the needs of users

The software crisis refers to the period when the costs, deadlines, and quality of software

projects were often unsatisfactory

History, definitions and objectives 01

According to a study of 8380 projects "Standish Group, 1995":

Success
16%

Failed
31%

Problem
53%

IT projects

History, definitions and objectives 01

Famous bugs:

1962: The Mariner 1 spacecraft is destroyed in flight shortly after its flight

 Cost: $18.5 millions

 Mission: flyby of the planet Venus

 Cause: Error in manually transcribing a mathematical symbol in the

specification

History, definitions and objectives 01

Famous bugs:

1985/1987: Therac-25 problem, overdose in radiotherapy "therapeutic irradiation

device"

 At least 5 deaths from massive radiation doses

 Cause: Design flaws in hardware and software

History, definitions and objectives 01

Famous bugs:

1994: The Pentium split bug, an error was introduced due to a design flaw in the floating

division algorithm

1996: Ariane 5, explosion of the first flight of Arian 5 due to an overflow error during the

conversion of a 64-bit float number to a 16-bit integer.

Cost $500 million. (The costliest computer bug in history)

2000: The bug of, malfunctions when the dates are after December 31, 1999

2011: PlayStation Network, millions of personal and banking data hacked, financial

losses of billions of dollars, due to network vulnerabilities

2014: Encryption tool, Open SSL, 500000 web servers affected by the flaw. Vulnerability

that could read a portion of the memory of a remote server

History, definitions and objectives 01

Idea:

The idea of software engineering is to apply classical engineering methods to the

software field.

Engineering : A set of functions ranging from design and studies to responsibility for the

construction and control of equipment in a technical or industrial installation.

Software engineering is a set of methods, techniques, and tools dedicated to the design,

development, and maintenance of computer systems.

Definitions:

As defined by Pollice, 2005 and IEEE 1993, software engineering is the application of a

systematic quantifiable disciplined approach to the development, operation, and

maintenance of software, as well as the study of these approaches

History, definitions and objectives 01

SE objective (CQFD criterion):

The SE is concerned with software manufacturing processes to ensure that the following

four criteria are met:

 Cost (C): Costs remain within the original limits.

 Quality (Q): Quality is the original service contract.

 Feature (F): The system that is manufactured meets the needs of users.

 Deadline (D): The deadlines remain within the limits provided at the

outset.

Principles of Software Engineering 02

Rigor:

The main sources of software failures are human-caused. At all times, you have to

question the validity of your action.

Verification tools that accompany development can help reduce errors. This family of

tools is called CASE (Computer Aided Software Engineering) such as Sparx Systems

Enterprise Architect , Microsoft Visio, Rational Software Architect, Eclipse Modeling

Framework (EMF).

Treat each aspect separately, each sub-problem simpler than the overall problem.

Abstraction:

Extract general concepts to reason about, and then instantiate solutions on particular

cases.

Decomposition into sub-problems:

Principles of Software Engineering 02

Modularity:

Partition of the software into interacting modules, fulfilling a function and having an

interface hiding the implementation from the other modules.

Propose solutions that are more general than the problem so that they can be reused

and adapted to other cases. Reusable software is much more valuable than a dedicated

component.

Incremental construction:

Step-by-step construction, gradual integration.

Genericity:

Principles of Software Engineering 02

Linked to genericity and modularity, plan for possible additions/modifications of

functionalities.

Anticipation of developments:

Documentations:

Essential for project monitoring and communication within the project team.

Expected quality of software 03

A set of entities necessary for the operation of an automatic information processing

process.

Among these entities are: Programs, User documentation, configuration information, ...

etc.

Definition 1:

Definition 2:

A set of programs that enables a computer system to perform a particular task or

function.

Example: a game, website, mobile application, ... etc.

Expected quality of software 03

Validity: the ability of a software product to perform exactly the tasks defined by its

specification.

Robustness: the ability of software to operate even under abnormal conditions.

Extensibility: Ease of adapting software to changes in specification.

Reusability: the ability of software to be reused in whole or in part for new

applications.

Compatibility: the ability of a software to be combined with each other.

External

Software quality factors have been given by B.MEYER in (design and object programming)

Expected quality of software 03

Efficiency: good use of equipment resources.

Portability: the ease with which the product can be adapted to different hardware or

software environments.

Verifiability: ease of preparation of acceptance and certification procedures (testing,

etc.).

Integrity: the ability of software to protect its various components from unauthorized

access and modification.

Ease of use (Usability): the ease with which users of a software can learn how to use

it, how to operate it, how to prepare the data, but also how to interpret the results

and effects in the event of an error.

Other factors of software quality are less crucial:

Expected quality of software 03

Modularity: this is the breakdown of the software into easily understandable and

relatively independent components.

Completeness: this is the degree to which the specifications are implemented.

Software is complete if all of its external specifications are operational.

Consistency: This is the ability to go back in the development cycle. In particular, to

report an error detected during maintenance at the level of implementation, design,

or analysis.

Generality: Potential range of application of software components

Self-documentation and readability: possibility of extracting documentation from the

software components.

Internal

Internal criteria make it possible to achieve these external quality factors

Software Life cycle 04

An activity includes: tasks, constraints, resources, a way of being carried out.

The software life cycle models the sequence of different activities in the technical

process of software development.

The main activities are:

 Requirements capture

 Global Specification

 Architectural and detailed design

 Programming

 Configuration and integration management

 Validation and verification

 Delivery and maintenance

Software Lifecycle 04

Goal: To avoid developing unsuitable software. The field of application as well as the curre

nt and future state of the system environment will be studied in order to determine:

Boundaries, Role, Available and Required Resources, Constraints

of use and performance ... etc.

Requirements

analysis

Customer

Needs

- Experts in the field of application

- Future users of the system

- Maintenance

- Questionnaire

- Observation of existence

- Similar situation study

- Specifications document

- Preliminary user Manual

1.1. Requirements analysis

Software Lifecycle 04

1.2. Requirements Specification:

Aim: To establish an initial description of the future system. to produce a description of wha

t the system should do but without specifying how it does it

Requirement Specification

1- Natural language specification

2- Semi-formal specification

3- Formal specification

- Model E/A

- Data flow diagram

- Transition state diagram

- Petri nets and grafcet

- Diagram of the O.O methods ...

- Specifications document

- Preliminary User Manual

- Functional specifications

- Technical and IT feasibility

Software Lifecycle 04

1.3. Design:

Goal: To enrich the description of the software with implementation details in order to

arrive at a description very close to a program (describe the how).

 Architectural design (or overall design) aims to break down software into simpler co

mponents, defined by their interfaces and functions (the services they provide).

 The detailed design provides for each component a description of how the functions

or services are performed: algorithms, data representation.

Software Lifecycle 04

1.3. Design:

Conception

1- Architectural design

2- Detailed Design

- Functional design and object-ori

ented design

- For each component, write the

algorithms

- Functional specifications

- Technical and IT feasibility

- Design File:

- (Architecture and Algorithm)

Software Lifecycle 04

1.4. Programming:

Programming

Implementation of the designed solution

 Choice of development environment, programming language(s), development standar

ds, etc.

- Source code

- Final User Manual

- Documentation

- Design File:

- (Architecture and Algorithm)

Software Lifecycle 04

1.5. Configuration Management and Integration:

Configuration management aims to control the evolution and updating of component

s throughout the development process.

The purpose of integration is to create one or more executable systems from the com

ponents (Combine components).

Software Lifecycle 04

1.6. Validation and verification:

The purpose of validation is to answer the delicate question: has the right system been

described, the one that meets the users' expectations?

The verification answers the question: Is the development correct in relation to the over

all specification? This consists of ensuring that the successive descriptions and the soft

ware itself satisfy the specification.

Software Lifecycle 04

1.7. Maintenance:

It involves making changes to existing software. This is the most expensive phase (70

% of the total cost)

Types:

Corrective maintenance, Perfective maintenance, Adaptative maintenance.

Software Lifecycle 04

Documents:

End User Manual Implementation

Architectural Design Brief Design

Source Code Implementation

Specifications Needs analysis

Preliminary User Manual Needs Analysis

Detailed Design File Design

Test Report Tests

Implementation Documentation

Functional Specification Specification

Software Lifecycle Models 05

Linear models
 waterfall model

 V-shaped model

...

Nonlinear models
 Prototyping

 Spiral model

 Incremental Modeling

 Unified Models

 ...

Software Lifecycle Models 05

1. waterfall Model

 Dates from the 70s but remains relevant

 Linear model with sequential phases

 Checking each phase before moving on to the next

 We cannot move on to the next stage as the previous one is not over

 Production of documents at the end of each phase

 Changing a stage has a big impact on future stages

 …

Software Lifecycle Models 05

1. Waterfall Model

Software Lifecycle Models 05

Benefits

 The schedule is established in advance and the project manager knows exa

ctly what will be delivered to him and when he will be able to take delivery

Disadvantages

 Model that is too sequential, i.e. lasts too long

 Validation too late (costly questioning of previous phases)

 Sensitivity to the arrival of new requirements (redo all the steps)

 Well suited when needs are clearly identified and stable

Software Lifecycle Models 05

2. V-shaped model

To date, the V-cycle remains the most widely used life cycle. It is a Test-Oriented Li

fe Cycle:

 Each creative activity "specification, design, and coding" corresponds to a verif

ication activity "validation, integration, unit tests"

 Each phase prepares the corresponding phase of verification "verification is ta

ken into account at the very moment of creation"

Software Lifecycle Models 05

2. V-shaped model

Software Lifecycle Models 05

Benefits

 The preparation of the last phases (validation and verification) by the first ones (soft

ware construction), makes it possible to avoid stating a property that is impossible to

verify after completion

 Each deliverable must be testable

Disadvantages
 The software is used very late, you have to wait a long time to know if you have built t

he right software

 Does not contain risk analysis activities

 Ideal when the needs are well known, "When the analysis and design are clear"

Software Lifecycle Models 05

3.b. Scalable Prototyping

 The project is carried out over several iterations

 Developers build a prototype according to the customer's expectations

 The prototype is evaluated by the customer

 The customer gives feedback

 Developers adapt the prototype based on feedback and new customer requirement

 When the prototype satisfies the customer, the code is standardized according to sta

ndards and best practices

3.a. Disposable Prototyping

 Skeleton of the software that is created only for a particular purpose and in a particu

lar phase of development, if this prototype is kept; then it's called evolutionary

prototyping

Software Lifecycle Models 05

3.b. Scalable Prototyping

Initial

needs

Conception

Prototype

Evaluate

with the

customer

Rectification

Satisfied

customer

Realization

Software Lifecycle Models 05

Benefits

 Active customer involvement, developer learns directly from the customer

 Adapt quickly to changing needs

Disadvantages

 Difficult to establish a schedule

 The process may never stop

 Ideal when needs are unstable and/or require clarification, recommended for very s

mall projects involving very few people

Software Lifecycle Models 05

4. Spiral model

 Determination of cycle objectives, alternatives to be achieved and constraints based

on the results of previous cycles, or preliminary needs analysis

 Risk analysis, evaluation of alternatives and possibly mock-up

 Development and verification of the chosen solution, a classic model can be used he

re "Cascade, V, ... »

 Review of results and verification of the next cycle

Each cycle of the spiral unfolds in four phases:

Software Lifecycle Models 05

4. Spiral model

Software Lifecycle Models 05

Benefits

 Helps establish the most appropriate development model for risk

 All other development models are a variant of the spiral

Disadvantages

 Needs skills in thoroughly assessing and mitigating project uncertainties and risks

 Assessing the risks involved in the project can take up to the cost and it can be

higher than the cost of building the system.

Bibliographies

 Introduction to Software Engineering, Ronald J. Leach, CRC Press, Taylor & Francis Group, 2016

 https://1library.net/document/rz3r50mz-introduction-to-software-engineering-pdf.html

 Génie logiciel, principes, méthodes et techniques, Presses Polytechniques et Universitaires Romande,

1996,

 https://www.leslibraires.fr/livre/596107-genie-logiciel-principes-methodes-et-techniques-alfred-strohmeier-didier-buchs--presses-

polytechniques-et-universitaires-romandes

