PW 01: recrystallization

I. Introduction

Recrystallization is a method used to **purify solids** based on their **different solubility in hot and cold solvents**. The product dissolves when hot but crystallizes when cooled, while impurities are removed either by hot filtration or remain dissolved.

II. Objectives

- Classify solvents by type (protic, polar aprotic, non-polar aprotic).
- Test miscibility of solvent pairs.
- Purify a crude solid by recrystallization.
- Use a binary solvent system for recrystallization.

III. Miscibility and Immiscibility of Solvents

Like dissolves like: polarity determines solubility.

- Solvent types:
 - 1. **Protic:** water, methanol, ethanol.
 - 2. Polar aprotic: acetone, DMF, DMSO.
 - 3. **Non-polar aprotic:** toluene, hexane, chloroform.
- Miscibility:
 - o Complete: water/methanol.
 - o Immiscible: water/mercury.
 - Partial: water/ether.

III.1. Experimental Procedure

III.1.1. Materiel and products

Products: H₂O, EtOH, DMSO, DMF, THF,CCl₄, CH₃CO₂H, toluene, acetone, ethyl acetate, ethylene glycol, CH₂Cl₂, CHCl₃, n-heptane, CH₃OH.

Materiel: test tube, Bunsen burner, test tube rack.

III.1.2. Procedure for the Classification of Solvents

Classify the following solvents according to the categories mentioned above:

H₂O, EtOH, DMSO, DMF, THF,CCl₄, CH₃CO₂H, toluene, acetone, ethyl acetate, ethylene glycol, CH₂Cl₂, CHCl₃, n-heptane, CH₃OH.

III.1.3. Procedure for the Study of Miscibility and Immiscibility of Solvents

Step 1 – Numbering solvents

Assign numbers from **1 to 15** to all solvents provided (for example: 1 = water, 2 = ethanol, etc.). Record the solvent list in your notebook.

Step 2 – Preparation of test tubes

- Take 14 clean and dry test tubes.
- Label them from **Tube 2 to Tube 15** according to the solvent number being tested.

Step 3 – Addition of solvents

- Into each test tube, place 1 mL of each solvent (from No. 2 to No. 15).
- Add 1 mL of solvent **No. 1** to each tube.

Step 4 – Mixing

- Shake each test tube gently to mix the two solvents.
- Record whether the mixture forms a **single homogeneous phase** (**miscible**) or separates into **two distinct layers** (**immiscible**).

Step 5 – Heating if necessary

- For test tubes where **two phases are observed**, heat the tube gently in a water bath (never with a direct flame).
- Note whether miscibility improves upon heating (formation of one phase) or remains unchanged.

Step 6 – Recording results

- Create a table with columns: **Tube number | Solvent pair | Observation at room temperature | Observation after heating**.
- Classify each pair as miscible, partially miscible, or immiscible.

IV. Recrystallization

IV.1. Principles

- Impurities must remain soluble in the cold solvent; product should crystallize out.
- Large difference in solubility between hot and cold solvent is required.
- Cooling must be slow to avoid trapping impurities in crystals.
- Use a rubber pad to limit heat loss; refrigeration can improve yield if impurities don't crystallize.

IV.2. Choice of Solvent

- Solvent polarity should match the product's.
- Boiling point < product's melting point.
- Poor solubility at cold T°, good solubility at hot T°.
- Solvent must be inert (no reaction with product).
- Impurities should be soluble or insoluble but not co-crystallizing.
- Activated carbon may be used to remove colored/organic impurities.

IV.3. Troubleshooting

- No crystallization: wrong solvent or too many impurities.
- Sudden crystallization during filtration: receiving vessel must be preheated.
- Excess impurities: further purification (e.g., chromatography) may be required.

IV.4. Verification

- Measure melting points of crude vs purified product.
- Purity $\uparrow \rightarrow$ sharper, higher melting point.

IV.5. Experimental Procedure

III.5.1. Materiel and products

Products: benzoic acid, distillated water.

Materiel: Erlenmeyer, filter paper, Buchner, ice bath.

IV.5.2. Procedure

- 1. Place ~0.5 g contaminated benzoic acid in a 25 mL Erlenmeyer flask with 5 mL water. Warm and add near-boiling water gradually until all solids dissolve.
- 2. Heat to reflux, adding solvent until complete dissolution.
- 3. If oil forms \rightarrow indicates too much heat or not enough solvent.

- 4. Perform **hot filtration** to remove insoluble impurities.
- 5. Allow solution to cool slowly \rightarrow crystals form.
- 6. Further cooling in ice bath maximizes yield.
- 7. If crystallization doesn't occur → induce by scratching glass, seeding, or strong cooling.
- 8. Filter and dry crystals.

Questions

- 1. How can a good recrystallization be carried out, and what conditions must be met?
- 2. To improve recrystallization, can the mixture be placed in the refrigerator?
- 3. Explain how recrystallization is performed using a mixture of two solvents.
- 4. Is it a good idea to use ethanol/water mixtures to recrystallize solid carboxylic acids?
- 5. Does an impurity decrease or increase the melting point?
- 6. How can impurities be separated from the final product?
- 7. How do you choose a recrystallization solvent?
- 8. What should you do if crystallization has still not occurred after several tens of minutes (the solution should then be at room temperature)?
- 9. How can the efficiency of recrystallization be determined?