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Chapter 2: Free Linear Systems with One Degree of Freedom 

(Undamped Free Vibration) 

The most fundamental system for the study of vibrations is the single degree of freedom 

system. By definition, a single degree of freedom system is one for which only one 

independent coordinate is needed to completely describe the motion of the system. 

It is called a harmonic oscillator when, as soon as it is displaced from its equilibrium position 

by a distance x (or angle θ), it is subjected to a restoring force that is opposite and 

proportional to the displacement x (or θ): 

F = –C·x 

To study vibratory systems, the following steps must be followed: 

 Establish the differential equation that represents the motion. 

 Solve the differential equation. 

 Derive the physical parameters: Amplitude, Beat, Frequency, etc. 

Several methods are used to determine the differential equation representing the motion. 

Among these methods are: Newton’s method, Lagrange’s method, the energy method, etc. 

In this course, we will use only two methods: Newton’s method and Lagrange’s method. 

a- Newton's Method 

Example 1: 

Study of the motion of a harmonic oscillator ;  a spring (k) attached to a mass (m). Consider a 

mass attached to the end of a vertical, mass less spring. This mass moves without friction in 

the vertical plane. At t = 0, the mass is displaced from its equilibrium position by a distance x, 

then released with zero initial velocity. 
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Applying Newton’s Method 

a. At equilibrium                         𝐹⃗  0   𝑃⃗⃗ 𝑇1⃗⃗ ⃗⃗ ⃗  0   P  T1  0 

                                                                 mg  kx0  0 ……………..(1) 

b. At movement                  𝐹⃗  m𝑎 ⃗⃗⃗ ⃗ 𝑃⃗⃗ 𝑇2⃗⃗ ⃗⃗ ⃗  m𝑎⃗ P  T2  ma  

                                                      mg  k(x0  x)  ma . 

                                                           mg  kx0  kx  m𝑥̈  

 kx  m𝑥̈ 

   m𝑥̈  kx 0 

Finally, we can write the differential equation that represents the motion as:                                                                              

𝒙̈  
𝑲

𝒎
x  0 

We observe that this is a second-order linear homogeneous differential equation. 

      b. Méthode de Lagrange :  

The Lagrange equation is used to determine the equation of motion of mechanical systems. 

It is described by the following equation: 
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Where L is the Lagrangian, which is an explicit function of the generalized coordinates and 

generalized velocities: 

L = T – U 

 T: is the total kinetic energy of the system 

 U: is the total potential energy of the system 

 qᵢ and ẋᵢ: are the generalized coordinates and generalized velocities 

 Fᵢ: are the generalized forces associated with qᵢ 

In the case of a conservative system with one degree of freedom, the equation of motion 

reduces to: 

 

Example 

Consider the same system (mass–spring). Using the Lagrange method, write the equation of 

motion and determine the natural angular frequency (ω₀). 

 Lagrangian: L = T – U 

 Kinetic energy: T = (1/2)·m·v² = (1/2)·m·ẋ² 

 Potential energy: U = (1/2)·k·x² 

So the Lagrangian becomes: 

L = (1/2)·m·ẋ² – (1/2)·k·x² 

Lagrange’s equation: 

 d/dt (∂L/∂ẋ) – ∂L/∂x = 0 

Now compute the derivatives: 

 ∂L/∂ẋ = m·ẋ ⇒ d/dt(∂L/∂ẋ) = m·ẍ 

 ∂L/∂x = –k·x 

Substitute into the Lagrange equation: 
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m·ẍ + k·x = 0 

After performing the derivations, we obtain the following equation:   m𝑥̈  kx 0 

If we divide this equation by m, we get the equation of motion: 

𝒙̈  
𝑲

𝒎
x  0 …………..(2) 

Solution of the Equation of Motion 

The differential equation of the harmonic oscillator admits the following sinusoidal solution: 

x = A cos(0t + 𝝋) 

The amplitude A and the phase angle φ depend on the initial conditions. To determine their 

values, two initial conditions are needed (usually x(t₀) and ẋ(t₀)). Therefore, these constants 

can vary depending on the initial conditions. 

The velocity of the mass is given by the first derivative of the position x(t): 

𝑥̇  -Aw0 sin (w0t)  

𝑥̈  -Aw0
2 cos (w0t)  

So                   𝑥̈-w0
2x   

We obain the following equation :     𝒙̈  w0
2x  0 …………(3) 

By comparing equation (2) with this equation, we deduce that: 

𝜔0
2 = 

𝐤

𝐦
              𝜔0 = √𝐤 𝐦 

𝜔0 is the natural (free) angular frequency. 

Energy of a Harmonic Oscillator 

The energy of a harmonic oscillator is the sum of its kinetic and potential energies: 

E = T + U 

 The translational kinetic energy of a body with mass m and velocity v is: 

T_transl = (1/2)·m·v² 

 The rotational kinetic energy of a body with moment of inertia IΔ about an axis Δ 

and angular velocity θ̇ is: 
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T_rot = (1/2)·IΔ·θ̇² 

 The potential energy of a mass m in a constant gravitational field g is: 

U = m·g·h 

(or U = –m·g·h in the case of descending a height h) 

 The potential energy of a spring with stiffness k during a deformation x is: 

U spring = (1/2)·k·x² 

 The potential energy of a torsional spring with stiffness k during an angular 

deformation θ is: 

U torsion = (1/2)·k·θ² 

 Note: The inertia of a body depends on its dimensions, its mass, and its axis of rotation. The 

figure shows the moment of inertia of different bodies. 
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Huygens’ Theorem 

The moment of inertia varies depending on the axis of rotation. If I0 is the moment of inertia 

of a body with mass m when the axis of rotation passes through the center of mass, and IΔ is 

the moment of inertia when the axis of rotation is Δ, at a distance d from the center of mass, 

then Huygens’ theorem gives the moment of inertia by the following formula: 

IΔ= I0+md2 


	Energy of a Harmonic Oscillator

