
Chapter 1
Units, Physical

Quantities, and Vectors



All physical quantities in engineering mechanics are measured using either scalars or

vectors.

Scalar. A scalar is any positive or negative physical quantity that can be completely

specified by its magnitude. Examples of scalar quantities include length, mass, and

time.

Vector. A vector is any physical quantity that requires both a magnitude and a

direction for its complete description. Examples of vectors encountered in statics are

force, position, and moment. A vector is shown graphically by an arrow. The length

of the arrow represents the magnitude of the vector, and the angle between the vector

and a fixed axis defines the direction of its line of action. The head or tip of the arrow

indicates the sense of direction of the vector, Fig.1.

In print, vector quantities are represented by bold face letters such as A, and its

magnitude of the vector is italicized, A. For handwritten work,

it is often convenient to denote a vector quantity by simply drawing an

arrow on top of it, A:.

Vectors and scalars



Vectors representing physical quantities can be classified as free, sliding, or fixed.

A free vector is one whose action is not confined to or associated with a unique line

in space. For example, if a body moves without rotation, then the movement or

displacement of any point in the body may be taken as a vector. This vector

describes equally well the direction and magnitude of the displacement of every

point in the body. Thus, we may represent the displacement of such a body by a free

vector.

A sliding vector has a unique line of action in space but not a unique point of

application. For example, when an external force acts on a rigid body, the force can

be applied at any point along its line of action without changing its effect on the

body as a whole, and thus it is a sliding vector.

A fixed vector is one for which a unique point of application is specified. The action

of a force on a deformable or nonrigid body must be specified by a fixed vector at

the point of application of the force. In this instance the forces and deformations

within the body depend on the point of application of the force, as well as on its

magnitude and line of action.



Adding two vectors graphically
Two vectors may be added graphically using either the parallelogram 

method or the head-to-tail method.



Adding more than two vectors graphically

To add several vectors, use the head-to-tail method.

• The vectors can be added in any order.



Components of a vector

• Adding vectors graphically provides limited accuracy. Vector components provide 

a general method for adding vectors.

• Any vector can be represented by an x component Ax and a y-component Ay.

• Use trigonometry to find the components of a vector: 

Ax = Acos θ and Ay = Asin θ, where θ is measured from the +x-axis toward the 

+y-axis.



• Adding vectors graphically provides limited accuracy. Vector components provide a general 
method for adding vectors.

• Any vector can be represented by an x-component Ax and a y-component Ay.

• Use trigonometry to find the components of a vector: 

• Ax = Acos θ and Ay = Asin θ, where θ is measured from the +x-axis toward the +y-axis.

Components of a vector

The magnitudes Ax and Ay form two sides of a right triangle that 

has a hypotenuse of magnitude A. Thus, from Ax and Ay we get:



Positive and negative components

• The components of a vector can

• be positive or negative numbers,

• as shown in the figure.

The signs of Ax  and Ay depend on the quadrant where the vector →A is 

located



Table 1. Calculating θ from φ  according to the signs of Ax  and 

Ay



Finding components

• We can calculate the components of a vector from its magnitude and direction.



Calculations using components

• We can use the components of a vector to find its magnitude and direction:

• We can use the components of a set of vectors to find the components of their sum:

• Refer to Problem-Solving

• Strategy 



Magnitude of a vector using components
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Figure 1.: Un point dans l’espace.

Représentation d’une distance

This method can be generalized to three-

dimensional vectors as:
A = Ax i + Ay j + Az k
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Fig. 2. Geometric representation of the sum

of the two vectors A and B , showing the

relationship between the components of

the resultant R and the components of A

and B.
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Unit vectors
• A unit vector has a 

magnitude of 1 with no 
units.

• The unit vector î points 
in the +x-direction, 
points in the +y-
direction, and points in 
the +z-direction.

• Any vector can be 
expressed in terms of 
its components as

A =Ax î+ Ay j + Az k .

• Follow Example 1.



The scalar product

A B

 A B cos q A B

cosW F r q   F r

• The scalar product of 

two vectors is  written 

as 

– It is also called the dot 

product

•

– q  is the angle between A

and B

• Applied to work, this 

means



Derivation
• How do we show that                                     ?

• Start with

• Then

• But 

• So
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Calculating a scalar product

In terms of components,

• Example 1 shows how to calculate a scalar product in two ways.



The vector product

The vector

product (“cross

product”) of

two vectors has

magnitude

and the right-

hand rule gives

its direction.
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Cross Product 
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The cross product of two vectors says something 

about how perpendicular they are.  

Magnitude: 

q is smaller angle between the vectors

Cross product of any parallel vectors = zero

Cross product is maximum for perpendicular vectors

Cross products of Cartesian unit vectors:



• Change of base for a vector, using projections

We define the base                      and the base 

as follows: 
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