TD Béton Armé 1 : Chapitre 1

Exercice 1:

Une éprouvette cylindrique de béton ($\varnothing=16$ cm, L=32 cm) a été soumise à un essai de compression. On a relevé une charge de rupture $F_r=650$ kN. Après rupture, le diamètre mesuré est d'=16.1 cm et la longueur l'=30.9 cm. Le diagramme expérimental montre un domaine élastique jusqu'à $\sigma\approx0.4\,f_{ci}$ et un pic de déformation $\epsilon_{peak}\approx0.002$.

On demande de:

- 1. Calculer la résistance caractéristique à la compression f_{ci} (en MPa).
- 2. Calculer la déformation longitudinale relative ε et la déformation transversale ε' .
- 3. Calculer le coefficient de Poisson v.
- 4. Estimer le module d'élasticité E_c en prenant comme borne de l'élasticité $\epsilon_{\acute{e}l}=0{,}002$ correspondante à $\sigma=0{,}4\,f_{ci}$.

Exercice 2:

On a un béton dont la résistance de référence est $f_{c28}=35$ MPa. Utiliser les lois données pour déterminer f_{cj} aux âges suivants : j=3 jours, j=7 jours, j=90 jours.

Exercice 3:

Soit un acier de nuance FeE500 avec les données suivantes :

- Limite d'élasticité garantie : f_e=500 MPa.
- Module d'élasticité de l'acier : E_s=200 GPa.
- La résistance ultime (f_u≈1.08×f_e).

On demande de:

- 1. Tracé du diagramme conventionnel **c**ontrainte-déformation
- 2. Calculez la déformation élastique ε_s.
- 3. Déterminez la contrainte dans l'acier pour une déformation de 5 ‰.
- 4. Quelle est la contrainte ultime théorique (f_e)?