Exercises on Set Theory

Exercise 1 (Set Operations). Let $A = \{1, 2, 3, 4, 5\}$, $B = \{3, 4, 5, 6, 7\}$, and $C = \{2, 4, 6, 8\}$. Compute:

- (a) $A \cup B$
- (b) $A \cap C$
- (c) $B \setminus A$
- (d) $A\triangle C$ (symmetric difference)
- (e) $\mathcal{P}(A \cap B)$ (power set of $A \cap B$)

Solution 1. (a) $A \cup B = \{1, 2, 3, 4, 5, 6, 7\}$

- (b) $A \cap C = \{2, 4\}$
- (c) $B \setminus A = \{6, 7\}$
- (d) $A \triangle C = (A \setminus C) \cup (C \setminus A) = \{1, 3, 5\} \cup \{6, 8\} = \{1, 3, 5, 6, 8\}$
- (e) $A \cap B = \{3, 4, 5\}$, so $\mathcal{P}(A \cap B) = \{\emptyset, \{3\}, \{4\}, \{5\}, \{3, 4\}, \{3, 5\}, \{4, 5\}, \{3, 4, 5\}\}$

Exercise 2 (Cartesian Product and Ordered Pairs). Using the set-theoretic definition of ordered pairs $(x, y) = \{\{x\}, \{x, y\}\}$:

- (a) Write explicitly the ordered pair (1,2)
- (b) Prove that (a, b) = (c, d) if and only if a = c and b = d

Solution 2. (a) $(1,2) = \{\{1\}, \{1,2\}\}$

(b) **Proof:**

If a = c and b = d, then clearly (a, b) = (c, d). Now assume (a, b) = (c, d), i.e., $\{\{a\}, \{a, b\}\} = \{\{c\}, \{c, d\}\}$. We consider two cases:

- If a = b, then $\{\{a\}, \{a, b\}\} = \{\{a\}, \{a\}\} = \{\{a\}\}\}$. So $\{\{c\}, \{c, d\}\} = \{\{a\}\}$, which implies $\{c\} = \{c, d\} = \{a\}$, so c = d = a = b.
- If $a \neq b$, then $\{a\} \neq \{a,b\}$. Since $\{\{a\}, \{a,b\}\} = \{\{c\}, \{c,d\}\}$, we must have $\{a\} = \{c\}$ (which gives a = c) and $\{a,b\} = \{c,d\}$ (which with a = c gives b = d).

In both cases, a = c and b = d.

Exercise 3 (Relations and Their Properties). Let R be a relation on \mathbb{Z} defined by xRy if and only if x-y is even. Determine whether R is:

- (a) Reflexive
- (b) Symmetric
- (c) Transitive
- (d) Antisymmetric

Justify your answers.

Solution 3. (a) **Reflexive:** Yes. For any $x \in \mathbb{Z}$, x - x = 0 which is even, so xRx.

- (b) **Symmetric:** Yes. If xRy, then x y is even, so y x = -(x y) is also even, hence yRx.
- (c) **Transitive:** Yes. If xRy and yRz, then x-y and y-z are even. Their sum (x-y)+(y-z)=x-z is even, so xRz.
- (d) **Antisymmetric:** No. Counterexample: 2R4 and 4R2 (since 2-4=-2 and 4-2=2 are both even), but $2 \neq 4$.

Exercise 4 (Functions and Their Properties). For each function below, determine whether it is injective, surjective, bijective, or none:

(a)
$$f: \mathbb{R} \to \mathbb{R}, f(x) = x^3$$

- (b) $g: \mathbb{Z} \to \mathbb{Z}, g(n) = 2n$
- (c) $h: \mathbb{R} \to [0, \infty), h(x) = x^2$
- (d) $k: \mathbb{N} \to \mathbb{N}, k(n) = n+1$

Solution 4. (a) $f(x) = x^3$ is bijective (both injective and surjective) on \mathbb{R} .

- (b) g(n) = 2n is injective but not surjective (odd numbers are not in the image).
- (c) $h(x) = x^2$ is neither injective (e.g., h(1) = h(-1)) nor surjective (negative numbers are not in the image, though the codomain is $[0, \infty)$, so actually it is surjective onto its codomain but not injective).
- (d) k(n) = n + 1 is injective but not surjective (1 is not in the image).

Exercise 5 (Russell's Paradox). Explain in your own words why the "set of all sets that do not contain themselves" leads to a paradox.

Solution 5. Let $R = \{A \mid A \notin A\}$ be the "set of all sets that do not contain themselves".

If $R \in \mathbb{R}$, then by definition R must satisfy $R \notin \mathbb{R}$.

If $R \notin R$, then R satisfies the condition for belonging to R, so $R \in R$.

Both assumptions lead to a contradiction, showing that such a set R cannot exist in consistent set theory.

Exercise 6 (Zermelo-Fraenkel Axioms). Which ZF axiom justifies each of the following?

- (a) The existence of the set $\{a,b\}$ for any two sets a and b
- (b) The existence of the union $\bigcup_{i\in I} A_i$ for any family of sets $\{A_i\}_{i\in I}$
- (c) The existence of the power set $\mathcal{P}(A)$ for any set A
- (d) The statement that two sets with the same elements are equal

Solution 6. (a) Axiom of Pairing

(b) Axiom of Union

- (c) Axiom of Power Set
- (d) Axiom of Extensionality

Exercise 7 (Cardinality and Equipollence). (a) Prove that the interval (0,1) has the same cardinality as \mathbb{R} .

- (b) Show that the set of integers \mathbb{Z} is countable.
- (c) What is the cardinality of $\mathcal{P}(\mathbb{N})$? Justify your answer.

Solution 7. (a) The function $f:(0,1)\to\mathbb{R}$ defined by $f(x)=\tan\left(\pi x-\frac{\pi}{2}\right)$ is a bijection, so $(0,1)\sim\mathbb{R}$.

(b) We can list all integers: $0, 1, -1, 2, -2, 3, -3, \ldots$, which gives a bijection with \mathbb{N} . Alternatively, the function $f: \mathbb{Z} \to \mathbb{N}$ defined by:

$$f(n) = \begin{cases} 2n & \text{if } n \ge 0\\ -2n - 1 & \text{if } n < 0 \end{cases}$$

is a bijection.

(c) By Cantor's Theorem, $\operatorname{card}(\mathbb{N}) < \operatorname{card}(\mathcal{P}(\mathbb{N}))$. The cardinality of $\mathcal{P}(\mathbb{N})$ is 2^{\aleph_0} , which is the cardinality of the continuum.

Exercise 8 (Axiom of Choice). Explain what the Axiom of Choice says and give an example of a situation where it is needed.

Solution 8. The Axiom of Choice states that for any collection of non-empty sets, there exists a function (called a choice function) that selects exactly one element from each set in the collection.

Example: Consider the collection of all non-empty subsets of \mathbb{R} . The Axiom of Choice guarantees that there exists a function that assigns to each non-empty subset of \mathbb{R} one of its elements. This is needed to prove many important results in mathematics, such as:

- Every vector space has a basis
- The product of any collection of non-empty sets is non-empty
- Zorn's Lemma and the Well-Ordering Theorem