Chapter Il.

Lexical analysis

a.hettab(@centre-univ-mila.dz




Introduction

® [ exical analysis consists of transforming a set of characters from
the source program into lexical units (tokens) in order to
provide them to the syntax analyzer.

® The most common lexical units are :
* Keywords (for, i, ...)
* Symbols (+,-,(,), ...)

* Identifiers (any sequence of letters and digits that starts with a
letter)

* Numbers (any sequence of digits)

¢ Comments and Whitespace are ignored during the lexical analysis

phase.
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Introduction

In lexical analysis, the following concepts are distinguished:

* Lexical unit: corresponds to an entity (a concept) returned
by the lexical analyzer. For example, <, >, <=, >= are all
relational operators.

* Lexeme: is an instance of a lexical unit. For example, the
lexeme 6.28 is an instance of the lexical unit number.

e Pattern: associates lexemes with their corresponding lexical
Lexical unit
5 P
ource program ——»
analyzer P analyzer
~ Get next lexical unit
\ /

unit.
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e
Formal languages

Definitions:

* Let X be a set called the alphabet, whose elements are called
characters.

* A word (over X) is a sequence of characters (from X). We
denote :

* ¢ the empty word,

* uv the concatenation of the words u and v (concatenation is
associative, and € is a neutral element).

« X * the set of all words over X.

* X + the set of all non-empty words over X.

* Alanguage over Y. is a subset L of X *.
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e
Formal languages

Examples:

® 24 is the alphabet, and L is the set of words in the French
dictionary with all their variations (plurals, conjugations).
L is the set of grammatically correct sentences in the French
language.

® )5 is the set of ASCII characters, and L3 consists of all the
pseudo-Pascal keywords: symbols, identifiers, and the set of
decimal integers. ..
L4 is the set of pseudo-Pascal programs.

® Y3is {a,b},and Lsis { a’b"”/n €N} (all words composed of a

and b where the number of a’s equals the number of b’s).
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Formal languages

Types of formal languages :

® The four types of formal languages are classified according to
Chomsky’s hierarchy, which organizes formal languages

based on their complexity.

* Type 0 languages (recursively enumerable languages):
These are the most general languages, which can be recognized
by a Turing machine. There are no restrictions on the form of

the production rules.

* Example: The language of all symbol strings, including infinite

or incomprehensible strings
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e
Formal languages

Types of formal languages (continued):

* Type 1 languages (context-sensitive languages): These
languages are recognized by a non-deterministic Turing machine
with limited memory. The production rules are of the form
AP — oyf3, where A is a non-terminal symbol, and Y is not
empty.

Example : The language L = a'b'c™|n,m=1}, where each
string contains an equal number of symbols a and b, and some

number of ¢’s.
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e
Formal languages

Types of formal languages (continued):

* Type 2 languages (context-free languages): These
languages are generated by context-free grammars, where
the production rules are of the form A — Yy, with A being a
non-terminal and Y a string of terminals and/or non-terminals

or E.

* Example : The language of well-balanced parentheses L = {()},
where each opening parenthesis corresponds to a closing

parenthesis.
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e
Formal languages

Types of formal languages (continued):

* Type 3 languages (regular languages): These are the
simplest languages, which can be recognized by a finite
automaton. The production rules are of the form A — aB or

A — a, where A and B are non-terminals, and a is a terminal..

* Example : The language L= {anbmln,m 20}, which contains
strings like ab, aabbb, aaabb, ... etc.
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Regular expressions

o Regular expressions represent a simple formalism for

describing certain simple languages (regular languages).

o They make it possible to describe lexical units in a

concise and compact way.

® The lexical analyzer generator LEX uses regular

expressions to specify its lexical units.
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e
Regular expressions

Definition:

* Leta, b, etc. be letters of the alphabet X. M and N are regular
expressions, and L[ M is the language associated with /.

® A letter a denotes the language {a}.

* Epsilon: € denotes the language{€}.

* Concatenation: M N denotes the language L/M]]( L[ N].
e Alternative: M | N denotes the language L/#] UL[N].
® Repetition: /" denotes the language (L/]) ™.

® M7 stands for M | € et M" stands for M M*.
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¢ identifier:

® Real number:
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° Signed integer:

Regular expressions
Examples:
* ]Jetter: [A-Za-2]
* digit: [0-9]

{letter} ({letter}| {digit})*
or else [A-Za-z][A-Za-z0-9]*
[-+]?{digit}+

or else [-+]7?[0-9]+
[-+]?{digit}+(, {digit}+)?

or else [-+]? [0-9]+(,[0-9]+)°

/




e
Finite state automaton

* Languages are recognized by formal machines called
automata, which, given a word, are capable of determining

whether or not it belongs to a language.

* A language over an alphabet X is regular if and only if it is
recognized by a finite state automaton [Kleene’s
Theorem]. Thus, every regular expression M has an

equivalent automaton that recognizes L[ M].

* A finite state automaton (FSA) is a model of a system
and its evolution—that is, a formal description of the system

and the way it behaves.
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Finite state automaton

* A finite state automaton (FSA) onsists of a finite set of
states (graphically represented by circles), a transition
function describing the action that allows movement from
one state to another, an initial state, and one or more

final states.

® An FSA is therefore a directed graph where the nodes

correspond to the states and the arcs contain the letters of

the alphabet X,
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Finite state automaton

* A finite state automaton M is a tuple (Q, X, 0, qo, F)
where :

e X :is an alphabet;

® Q:is a finite set of states;

® §:Q x X — Qis the transition function;
® q,: is the initial state;

® F:isa set of final states.

Property :

e The language L(M) recognized by the automaton M is the
set { W | 8(qo, W) € F} of words that reach a final state
from the initial state of the automaton.
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Finite state automaton

Example:

® Finite state automaton corresponding to the regular
expression ab*c(c* | bt+ct):

Z — {a b C} Figure II.1. Finite state automaton for ab*c(c* | b+c+).
Q=1{1,2,3}

6= {(1,2)—2, (2,b)>2,(2,¢c)—>3,(3,b)>2, (3, c)—>3}
initial state = {1}

Final states: a single final state = {3}.
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Representation of an automaton

® The function O with finite domain Q X X can be represented

by a two-dimensional matrix whose elements are :

*® the states (for a deterministic automaton), or

® a set of states (for a non-deterministic automaton)

et 12}
12} - 2} 31
#{3} - 12} 3

Transition table of the previous automaton
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Deterministic finite automaton (DFA) and
non-deterministic finite automaton (NFA)
DFA NFA

e A finite state automaton is
non-deterministic if:

e A finite state automaton is

deterministic if:

® For each letter and each ® For a given state and a
letter, there can be
multiple outgoing

transitions.

Or

® There can be

transitions via €

state, there is only one
outgoing transition.
And
® There are no

transitions via €

@ Chapter 02 — Lexical Analysis




Implementation of regular expressions

® To perform lexical analysis on computers, regular expressions are
transformed into finite state automata, whose implementation is
simple and whose recognition of lexical units is fast. This procedure

goes through the following four steps:
* Ist step:Transformation of regular expressions into NFAs.
® 2nd step:Transformation of NFAs into DFAs.
® 3rd step: Minimization of DFAs.

e 4th step: Implementation of minimal DFAs.
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Transformation of a regular expression
into an NFA

Thompson’s Construction:

° Among the most comrnonly used methods for building finite
state automata from regular expressions 1S Thornpson’s
Construction, which automatically generates an NFA from a

regular expression as follows:

® The regular expression is broken down into simple
components, and for each component, an automaton is built
according to Thompson’s basic rules. Then, the automata
obtained in the first step are combined to construct the final

automaton according to Thompson’s Composition rules.
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Thompson’s rules
Basic rules

e |st rule: used to construct an automaton for the

regular expression E.

¢ 2nd rule: used to construct an automaton for

the regular expression a.

00

@ Chapter 02 — Lexical Analysis




s
Thompson’s rules

Composition rules

® 3rd rule: Alternation R |S:

¢ 5th rule: Kleene star R* :
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¢ 4th rule: Concatenation RS :




Thompson'’s rules
Example

® The NFA obtained from the regular expression : a(b | ¢)*.

Figure I1.2. NFA for the regular expression : a(b | c)*.
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Transformation of an NFA into a DFA
Transformation algorithm

Iransformation algorithm
* Data: An NFA defining the language N.
* Result: A DFA defining the same language as N.
® D is the transition table of the DFA.
The following functions are available:

® £-Closure(e) : the set of NFA states reachable from state e of the
NFA via €-transitions (including state e).

® S-Closure(T) : the set of NFA states reachable from any state e
belonging to T via €-transitions (including the set T itself).

* Move(T, a) : the set of NFA states to which there is a transition
in the NFA on symbol a from some state e belonging to T.
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" Transformation of an NFA intoa DFA
Transformation algorithm

E0 = g-closure(initial state of the NFA);
add EO as the initial state of D (without marking it);

while there exists an unmarked state E in D do
mark E;

for each character c in the alphabet do

F = g-closure(move(E, c));
if F is not a state of D then
add state F to D (without marking it);
if any element of F is an accepting state of the NFA then

F is an accepting state of D;
end if

end if
add the transition E>F to D;
end for

end while

end

bhapter UZ — Lexical Analysw
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Transformation of an NFA into a DFA

Example

® Let’s take the example of the NFA from Figure II.2
corresponding to the regular expression a.(b | c)* :
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Transformation of an NFA into a DFA
Example

Construction of the DFA:
* &-closure(0) = {0}
® Transition table D of the DFA:

S A=) 11,2,3,5,8)=B

B#={1,2,3,5,8) : (47823,5'=C  16,7,8,2,3,5'=D
C#=1{4,7,8,23,5) — C D
D#=1{6,7,8,2,3,5) C D

® Initial state: €-closure(0) = {0} = A
® Final states : B, C , D
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Transformation of an NFA into a DFA

Example

® The DFA obtained for the regular expression a.(b | ¢)* using the

transformation algorithm.

—A B
B# - C D
C# - C D
D# C D

Figure I1.4. DFA for the regular expression : a.(b | c)*
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Minimization of the DFA

* To perform lexical analysis, it is preferable that the
DFA’s transition table be as small as possible to save

memory.

e Theorem: There exists a unique deterministic
automaton with a minimal number of states that

recognizes a rational language L [Myhill-Nerode].

* Partition refinement algorithms (e.g., Moore’s
algorithm and Hopcroft’s algorithm) are the simplest to

usc.
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Minimization of the DFA

Before using partition refinement algorithms, it is
necessary to remove inaccessible states and dead
states.

® Inaccessible states are states that cannot be reached

from the initial state.

e Dead states are states from which there is no path to a final state

b Inaccessible
state

Dead state
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A,

Minimization of the DFA
Algorithm

Let A= (Q, 2, 0, qo» F) be a deterministic finite automaton

- Initially: Create two state classes C1 and C2 // C1 contains the final
states (F) and C2 contains the non-final states (Q \ F)

Repeat
For each partition Ci do

For each input symbol a do

If there exist two different states g1 and g2 belonging to
Ci that, when reading symbol a, lead to states belonging to
two different classes, then

Create a new class Cj and separate ¢4 from qp.

End if

End for

End for

] d

Until there are no two classes left to separate.

v e A srAivwa 4o axaweny




e

Minimization algorithm
Example

® Let’s take the example of the NFA from Figure I1.4
corresponding to the regular expression a.(b | c)*

@ Chapter 02 — Lexical Analysis




e
Minimization algorithm

Example

® Let’s take the example of the NFA from Figure I1.4
corresponding to the regular expression a.(b | c)*.
* Initially.

I: Cl:{A},C2:{B,C,D}
B---b--> C C---b-->C D---c--> D
B---c--> D C---c--> D D---c-->D

* 15t Iteration:
Il: C1: {A}, C2:{ B,C,D}
® We cannot split {B, C, D} since B, C, and D are inseparable states.
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Minimization algorithm

Example

* Transition table of the minimal DFA.
—A B -

B# - B B

Figure I1.5. Minimal DFA for the regular expression: a.(b | c)*
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Regular expressions and automaton

Example 2

® The NFA obtained from the regular expression: d((a|b)* | bc)*a.

* Regular expression —NFA

41rwgaceo

0\0/




s
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Regular expressions and automaton

Example 2
e NFA —-DFA

{1,2,3,4,5,6,10,11

= {0} ,12,15}=B
B {79,0,11,154,5,6,2 {8,13,9,10,11,15.,4,
,3,12,16}=C 5,6,2,3,12}=D
C# C D
D C D {14,11,15,2,3.,4,5,
6,10,12}=E
E C

Figure I1.6. DFA for the
regular expression:

d((a|b)* |bc)*a




Regular expressions and automaton
Example 2

e DFA — Minimal DFA
* Initially: I: {A,B,E,D} , {C}
* 1st Iteration: Il : {A},{B,E},{D}, {C}
A— ® c d
B—-C B—D B—-®d B—o®
E—-C E—D E— O E—®
D—-C D—D D—E
* 2nd Iteration: l1I: {A},{D},{B,E}, {C}
o II =III. We cannot split {B, E} since B and E lead to

the same states for all input symbols.
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Regular expressions and automaton

Example 2
| a | b | e | d

BE C D
D C D BE
C#H C D

—©
Figure II.7. Minimal DFA for the regular expression: d((a|b)* |bc)*a
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Implementation of minimal DFAs

Recognition algorithm

* Input: a string of input characters S ending with a special

character "#".

* Output: whether the string is recognized by the automaton or

not.
e The following functions are available :

v Move(e, c): returns the state of the automaton to which there

is a transition from state e on the input character c.

v NextChar() : returns the next character to be analyzed from

the string S.
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Implementation of minimal DFAs
Recognition algorithm

€:—¢p;

c:=NextChar();

while (c # '#'ete # &) do
e:=Move (e,c);
c:=NextChar ();

end while ;

if eeF then

"Chaine acceptee" ;
else

"Chaine refusée" ;

End if
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Tools for implementing regular expressions

® Practical implementation of finite state automata.
* Using existing libraries such as Java, C++, PHP, etc.

* Using lexical analyzer generators: Lex, Flex, Jlex, etc.
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LEX: lexical analyzer generator

Introduction

® Lex is a tool for generating lexical analyzers in the C

language. [t was originally written by Mike Lesk and Eric
Schmidt in 1975.

® Lex is capable of handling type 3 languages (regular
languages ).
* Lex is often used in combination with the syntax

analyzer generator Yacc.

@ Chapter 02 — Lexical Analysis




s
LEX: lexical analyzer generator

Principle

e Lex takes as input the definition of lexical units in the

form of regular expressions.

o Lex generates a minimal deterministic finite automaton

to recognize the lexical units.

e Lex produces the automaton in the form of a C

pI‘O gram .
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LEX: lexical analyzer generator

Regular expressions in LEX (1)

X The character 'x'

Any character except \n

[xyz] Either x, or y, or z
["bz] All characters except b and z
[a-z] Any character between a and z
[*a-z] All characters except those between a and z
R¥* Zero or more R, where R is any regular expression
R+ One or more R
R? Zero or one R (i.e., an optional R)
R{2,5} Between two and five R
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LEX: lexical analyzer generator

Regular expressions in LEX (2)

R{2,} Two or more R
R{2} Exactly two R
"[xyz\"foo" The string '[xyz" foo'
{NOTION} The expansion of the NOTION defined earlier
RS R followed by S
R|S R or S
R/S R, only if it is followed by S
"R R, but only at the beginning of a line
RS R, but only at the end of a line
<<EOF>> End of file
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LEX: lexical analyzer generator

Regular expressions Examples (1)

* whitespace [\t\n |+

® letter [A-Za-z]

e digitl0 [0-9] /* Base-10 digit*/

e digitl6 [0-9A-Fa-f] /* Hexadecimal digit*/
* identifier {letter}(_| {letter} | {digit10})*

Or else 1identifier [A-Za-z] [ _A-Za-z0-9] *
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LEX: lexical analyzer generator

Regular expressions Examples (2)
e digit [0-9]
* integer  {digit}+
* exponent [eE][+-]?{integer}
* realFP {integer}("." {integer})?{exponent}?

* real [+-]2 [0-9] +("." [0-9] +)?
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LEX: lexical analyzer generator
Structure of a LEX program

* A Lex description file consists of three parts:
% Declarations
%%
<* Rules (Productions)
%%
% Additional code
* None of the parts is mandatory.

® The symbol %% is used as a separator between the parts.
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LEX: lexical analyzer generator

Structure of a LEX program (first part)

* First part: Declarations, may contains:

® Code written in the target language (C), enclosed between %{ and

%}, Lex copies everything written between these markers as-is.

* Regular expressions defining non-terminal notions, to be used in
the rest of the first part of the Lex file, as well as in the second part,

by enclosing them in { }.These specifications take the form:

notion regular expression
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LEX: lexical analyzer generator

Structure of a LEX program (first part)

* Example :

0/0{

#include "calc.h"
#include <stdio.h>
#include <stdlib.h>
O/O}

/* Regular expressions*/
Whitespaces [\t\n |+
Letter [A-Za-z]
Digit [0-9]
Identifier {Letter|(_| {Letter} | {Digit})*
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LEX: lexical analyzer generator

Structure of a LEX program (second part)

e Second part: Rules (Productions)

e This part is used to tell Lex what to do when it encounters a

particular lexical unit. It can contain productions of the form:
regular expression action

The actions are written in the target language (C) and must be

enclosed in { }.

If an action is absent, Lex copies the characters as-is to the standard

output.
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LEX: lexical analyzer generator

Structure of a LEX program (second part)

® Comments such as /* ... */ can only be placed within actions
enclosed in braces. Otherwise, Lex would interpret them as part
of the regular expressions or actions, which would result in

€rror messages .

® The variable yytext refers, within actions, to the characters
matched by a regular expression. It is a character array of

length yyleng (thus defined as char yytext[yyleng]).
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LEX: lexical analyzer generator

Structure of a LEX program (second part)

° Example :

%%
[ \t]+$ :
[ \t] prlntf(" ")

e This program removes all unnecessary spaces in a file.
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LEX: lexical analyzer generator

Structure of a LEX program (third part)

e Third part: Additional code:

® In this optional part, you can include any code you want. If you

leave it empty, Lex simply ignores it :

® main() {

yylex();
L
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LEX: lexical analyzer generator
Running LEX on Linux

e The LEX program runs as follows:

* A file, for example named test.l, containing the specification of
the lexical analyzer to be generated, is compiled using the Lex

Compiler by running the lex command.

* The lex command generates the C code of the analyzer,
which is placed in a file named lex.yy.c

* The GCC compiler is then used to compile lex.yy.c and
produce an executable (e.g., a.out).Finally, the executable is

loaded and run.
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LEX: lexical analyzer generator

Running LEX on Linux

e lex test.l

® gcc lex.yy.c -0 test.exe -lfl

o . /test.exe

Lex source
X Lex GCC
program —> . —> lex.yy.c —> . —> test.exe
compller compller
test.l
test.exe Sequence of

Input stream —>
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LEX:

Exan

%
int chars
int words
int lines

yylex();

}

yyin = fopen (“lex.yy.c%,

printf (“1ines=%d\n words=%d\n words=%d",
fclose (yyin) ;

exical analyzer generator
ple

/* just like Unix wc */

0
0
0

Ne Neo No

{ words++; chars += yyleng; }
{ chars++; lines++; }
{ chars++; }

Q
°
main (int argc, char **argv)
{

\\r\\) ;
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