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Chapter II.

Lexical analysis



Introduction

 Lexical analysis consists of transforming a set of characters from 

the source program into lexical units (tokens) in order to 

provide them to the syntax analyzer.

 The most common lexical units are :

• Keywords (for, if, …)

• Symbols (+, -, (, ), …)

• Identifiers (any sequence of letters and digits that starts with a 

letter)

• Numbers (any sequence of digits)

 Comments and whitespace are ignored during the lexical analysis 

phase.
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Introduction
In lexical analysis, the following concepts are distinguished:

 Lexical unit: corresponds to an entity (a concept) returned 
by the lexical analyzer. For example, <, >, <=, >= are all 
relational operators.

 Lexeme: is an instance of a lexical unit. For example, the 
lexeme 6.28 is an instance of the lexical unit number.

 Pattern: associates lexemes with their corresponding lexical 
unit.
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Formal languages

Definitions:

 Let Σ be a set called the alphabet, whose elements are called 
characters.

 A word (over Σ) is a sequence of characters (from Σ). We 
denote :

• ɛ the empty word,

• uv the concatenation of the words u and v (concatenation is 
associative, and ɛ is a neutral element).

• Σ ∗ the set of all words over Σ.

• Σ + the set of all non-empty words over Σ.

 A language over Σ is a subset L of Σ ∗.
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Formal languages

Examples:

 Σ₁ is the alphabet, and L₁ is the set of words in the French 
dictionary with all their variations (plurals, conjugations).
L₂ is the set of grammatically correct sentences in the French 
language.

 Σ₂ is the set of ASCII characters, and L₃ consists of all the 
pseudo-Pascal keywords: symbols, identifiers, and the set of 
decimal integers…
L₄ is the set of pseudo-Pascal programs.

 Σ₃ is {a, b}, and L₅ is { aⁿbⁿ ∣ n ∈ ℕ } (all words composed of a
and b where the number of a’s equals the number of b’s).



Chapter 02 – Lexical Analysis6

Formal languages

Types of formal languages :

 The four types of formal languages are classified according to 

Chomsky’s hierarchy, which organizes formal languages 

based on their complexity.

 Type 0 languages (recursively enumerable languages):

These are the most general languages, which can be recognized 

by a Turing machine. There are no restrictions on the form of 

the production rules.

 Example:The language of all symbol strings, including infinite 

or incomprehensible strings 
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Formal languages

Types of formal languages (continued):

 Type 1 languages (context-sensitive languages): These 

languages are recognized by a non-deterministic Turing machine 

with limited memory. The production rules are of the form  

αAβ → αγβ, where A is a non-terminal symbol, and γ is not 

empty.

Example : The language L = { aⁿbⁿcᵐ ∣ n, m ≥ 1 }, where each 

string contains an equal number of symbols a and b, and some 

number of c’s.  
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Formal languages

Types of formal languages (continued):

 Type 2 languages (context-free languages): These 

languages are generated by context-free grammars, where 

the production rules are of the form A → γ, with A being a 

non-terminal and γ a string of terminals and/or non-terminals 

or ɛ.

 Example : The language of well-balanced parentheses L = {()}, 

where each opening parenthesis corresponds to a closing 

parenthesis.  
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Formal languages

Types of formal languages (continued):

 Type 3 languages (regular languages): These are the 

simplest languages, which can be recognized by a finite 

automaton. The production rules are of the form A → aB or 

A → a, where A and B are non-terminals, and a is a terminal..

 Example : The language L={anbm∣n,m ≥0}, which contains 

strings like ab, aabbb, aaabb, … etc.
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Regular expressions

 Regular expressions represent a simple formalism for 

describing certain simple languages (regular languages).

 They make it possible to describe lexical units in a 

concise and compact way.

 The lexical analyzer generator LEX uses regular 

expressions to specify its lexical units. 



Regular expressions

Definition:

 Let a, b, etc. be letters of the alphabet Σ. M and N are regular 

expressions, and L[M] is the language associated with M. 

 A letter a denotes the language{a}.

 Epsilon: ɛ denotes the language{ɛ}.

 Concatenation:  M N denotes the language L[M]]∩L[N].

 Alternative: M | N denotes the language L[M] ∪ L[N].

 Repetition: M∗ denotes the language (L[M]) ∗.

 M? stands for M ∣ ɛ et M+ stands for M M∗.
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Regular expressions

Examples:

 letter:                      [A-Za-z]

 digit:                       [0-9]

 identifier:               {letter}({letter}|{digit})* 

            or else [A-Za-z][A-Za-z0-9]*

 Signed integer:      [-+]?{digit}+

                   or else [-+]?[0-9]+  

 Real number:          [-+]?{digit}+(,{digit}+)?

                   or else [-+]? [0-9]+(,[0-9]+)?
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Finite state automaton

 Languages are recognized by formal machines called 

automata, which, given a word, are capable of determining 

whether or not it belongs to a language. 

 A language over an alphabet Σ is regular if and only if it is 

recognized by a finite state automaton [Kleene’s 

Theorem]. Thus, every regular expression M has an 

equivalent automaton that recognizes L[M].

 A finite state automaton (FSA) is a model of a system 

and its evolution—that is, a formal description of the system 

and the way it behaves. 
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Finite state automaton

 A finite state automaton (FSA) onsists of a finite set of 

states (graphically represented by circles), a transition 

function describing the action that allows movement from 

one state to another, an initial state, and one or more 

final states. 

 An FSA is therefore a directed graph where the nodes 

correspond to the states and the arcs contain the letters of 

the alphabet Σ.  



Finite state automaton
 A finite state automaton M is a tuple (Q, Σ, δ, q₀, F)

where :

 Σ : is an alphabet;

 Q : is a finite set of states;

 δ : Q  Σ → Q is the transition function;

 q0 : is the initial state;

 F : is a set of final states.

Property :

 The language L(M) recognized by the automaton M is the 
set { w | δ(q₀, w) ∈ F } of words that reach a final state 
from the initial state of the automaton.
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Finite state automaton
Example:

 Finite state automaton corresponding to the regular 

expression ab*c(c*| b+c+) :

Σ = {a, b,c}

Q = {1, 2, 3}

δ = {(1, a)→2, (2, b)→2, (2, c)→3, (3, b)→2, (3, c)→3}

initial state = {1}

Final states: a single final state = {3}.

1 2 3a

c

b

b c

Figure II.1. Finite state automaton for ab*c(c*| b+c+).



Representation of an automaton

 The function δ with finite domain Q × Σ can be represented 

by a two-dimensional matrix whose elements are : 

 the states (for a deterministic automaton), or

 a set of states (for a non-deterministic automaton)

cba

--{2}→{1}

{3}{2}-{2}

{3}{2}-#{3}

Transition table of the previous automaton
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Deterministic finite automaton (DFA) and 

non-deterministic finite automaton (NFA)

DFA

 A finite state automaton is 

deterministic if:

 For each letter and each 

state, there is only one 

outgoing transition.

And 

 There are no 

transitions via ɛ 
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NFA

 A finite state automaton is 
non-deterministic if:

 For a given state and a 
letter, there can be 
multiple outgoing 
transitions.

Or

 There can be 
transitions via ɛ
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Implementation of regular expressions

 To perform lexical analysis on computers, regular expressions are 

transformed into finite state automata, whose implementation is 

simple and whose recognition of lexical units is fast. This procedure 

goes through the following four steps:

 1st step: Transformation of regular expressions into NFAs.

 2nd step: Transformation of NFAs into DFAs.

 3rd step: Minimization of DFAs.

 4th step: Implementation of minimal DFAs.



Transformation of a regular expression 

into an NFA

Thompson’s Construction:

 Among the most commonly used methods for building finite 

state automata from regular expressions is Thompson’s 

Construction, which automatically generates an NFA from a

regular expression as follows:

 The regular expression is broken down into simple 

components, and for each component, an automaton is built 

according to Thompson’s basic rules. Then, the automata 

obtained in the first step are combined to construct the final 

automaton according to Thompson’s composition rules.
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Thompson’s rules 

Basic rules

 1st rule: used to construct an automaton for the 

regular expression ε.

 2nd rule: used to construct an automaton for 

the regular expression a.

e

a
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Thompson’s rules 

Composition rules

 3rd rule: Alternation R|S :

 4th rule: Concatenation RS :

 5th rule: Kleene star R* :

Chapter 02 – Lexical Analysis22



Chapter 02 – Lexical Analysis23

Thompson’s rules 

Example

 The NFA obtained from the regular expression : a(b|c)*.

ε

0 1 2

3

5

4

6

7 8

a b

c

ε

ε

ε

ε
ε ε

ε

Figure II.2. NFA for the regular expression : a(b|c)*.



Transformation of an NFA into a DFA

Transformation algorithm

Transformation algorithm

 Data: An NFA defining the language N.

 Result: A DFA defining the same language as N.

 D is the transition table of the DFA.

The following functions are available:

 ε-closure(e) : the set of NFA states reachable from state e of the 
NFA via ε-transitions (including state e).

 ε-closure(T) : the set of NFA states reachable from any state e
belonging to T via ε-transitions (including the set T itself).

 Move(T, a) : the set of NFA states to which there is a transition
in the NFA on symbol a from some state e belonging to T.
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Transformation of an NFA into a DFA

Transformation algorithm
E0 = ε-closure(initial state of the NFA);

add E0 as the initial state of D (without marking it);

  while there exists an unmarked state E in D do

        mark E;

            for each character c in the alphabet do

                      F = ε-closure(move(E, c));

                      if F is not a state of D then

                                  add state F to D (without marking it);

                                  if any element of F is an accepting state of the NFA then

                                       F is an accepting state of D;

                                  end if

                       end if

                   add the transition E →F   to  D;

          end for

  end while

end

c



Transformation of an NFA into a DFA

Example

 Let’s take the example of the NFA from Figure II.2 

corresponding to the regular expression a.(b|c)* :
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ε

0 1 2

3

5

4

6

7 8

a b

c

ε

ε

ε

ε
ε ε

ε



Transformation of an NFA into a DFA

 Example
Construction of the DFA:

 ε-closure(0) = {0}

 Transition table D of the DFA:

 Initial state: ε-closure(0) = {0} = A

 Final states : B, C , D

Chapter 02 – Lexical Analysis27

a b c

→ A ={0} {1,2,3,5,8}=B - -

B#={1,2,3,,5,8} - {4,7,8,2,3,5}=C {6,7,8,2,3,5}=D

C#={4,7,8,2,3,5} - C D

D#={6,7,8,2,3,5} C D
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Transformation of an NFA into a DFA

Example

a b c

→ A B - -

B# - C D

C# - C D

D# C D

A B

C

D

a
b

c

b

c b

c

Figure II.4. DFA for the regular expression : a.(b|c)* 

 The DFA obtained for the regular expression a.(b|c)* using the 

transformation algorithm.



Minimization of the DFA

 To perform lexical analysis, it is preferable that the 

DFA’s transition table be as small as possible to save 

memory. 

 Theorem: There exists a unique deterministic 

automaton with a minimal number of states that 

recognizes a rational language L [Myhill-Nerode].

 Partition refinement algorithms (e.g., Moore’s 

algorithm and Hopcroft’s algorithm) are the simplest to 

use.
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Before using partition refinement algorithms, it is 

necessary to remove inaccessible states and dead 

states.

 Inaccessible states are states that cannot be reached 

from the initial state.

 Dead states are states from which there is no path to a final state

Minimization of the DFA

A B

C

D

a
b

c

b

c b

c

E

a

F

a

Inaccessible 

state

Dead state
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Minimization of the DFA
Algorithm

Let A= (Q, Σ, δ, q0, F) be a deterministic finite automaton

- Initially: Create two state classes C1 and C2 // C1 contains the final 

states (F) and C2 contains the non-final states (Q \ F)

Repeat

       For each partition Ci do

              For each input symbol a do

              End for

        End for

Until there are no two classes left to separate.

If there exist two different states q₁ and q₂ belonging to 

Cᵢ that, when reading symbol a, lead to states belonging to 

two different classes, then

      Create a new class Cⱼ and separate q₁ from q₂.

End if



Minimization algorithm

Example
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 Let’s take the example of the NFA from Figure II.4 

corresponding to the regular expression a.(b|c)*

A B

C

D

a
b

c

b

c b

c
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Minimization algorithm
Example

 Let’s take the example of the NFA from Figure II.4 

corresponding to the regular expression a.(b|c)*.

 Initially:

:   C1: {A} , C2:{ B,C,D}

B---b--> C             C---b--> C          D---c--> D      

    B---c--> D             C---c--> D          D---c--> D     

 1st Iteration:

 : C1: {A} , C2:{ B,C,D}

 We cannot split {B, C, D} since B, C, and D are inseparable states.
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Minimization algorithm
Example

A B
a

b|c

 Transition table of the minimal DFA.

a b c

→A B -

B# - B B

Figure II.5. Minimal DFA for the regular expression: a.(b|c)* 



Regular expressions and automaton

Example 2
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 The NFA obtained from the regular expression: d((a|b)*|bc)*a.

 Regular expression →NFA

0 1 2

3 4

5

6

7

8

9 10 11

12 13 14

15 16d

a

b

b c

a

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε ε

ε

ε

ε ε
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Regular expressions and automaton

Example 2
 NFA →DFA

a b c d

→A 

= {0}

- - - {1,2,3,4,5,6,10,11

,12,15}=B

B {7,9,10,11,15,4,5,6,2

,3,12,16}=C

{8,13,9,10,11,15,4,

5,6,2,3,12}=D

- -

C# C D - -

D C D {14,11,15,2,3,4,5,

6,10,12}=E

-

E C D - -

A B

D

C

E

d
b

a

b

a b

a

a

b cFigure II.6. DFA for the 

regular expression: 

d((a|b)*|bc)*a
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Regular expressions and automaton
Example 2
 DFA → Minimal DFA

 Initially:        : {A,B,E,D} , {C}

 1st Iteration:     : {A},{B,E},{D}, {C} 
    A → Ф      

   B → C     B → D       B → Ф       B → Ф

   E → C     E → D       E → Ф        E → Ф 

   D → C     D → D      D → E

 2nd Iteration: : {A},{D},{B,E}, {C} 

  = . We cannot split {B, E} since B and E lead to 
the same states for all input symbols.

a

a

a

a

b

b

b

c

c

c

d

d
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Regular expressions and automaton
Example 2

a b c d

→A - - - BE

BE C D

D C D BE -

C# C D - -

b

Figure II.7. Minimal DFA for the regular expression: d((a|b)*|bc)*a

A
BE C

d

b

a

a

D

a

b

c



Implementation of minimal DFAs

Recognition algorithm 

 Input: a string of input characters S ending with a special 

character "#".

 Output: whether the string is recognized by the automaton or 

not.

 The following functions are available :

✓Move(e, c): returns the state of the automaton to which there 

is a transition from state e on the input character c.

✓NextChar() : returns the next character to be analyzed from 

the string S.
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e:=e0;

c:=NextChar();

while (c  '#' et e  ) do 

  e:=Move (e,c);

c:=NextChar ();

end while ;

if eF then 

      "Chaine acceptée" ;

else 

       "Chaine refusée" ;

End if
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Implementation of minimal DFAs

Recognition algorithm 



Tools for implementing regular expressions

Chapter 02 – Lexical Analysis

 Practical implementation of finite state automata.

 Using existing libraries such as Java, C++, PHP, etc.

 Using lexical analyzer generators: Lex, Flex, Jlex, etc.

41
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LEX: lexical analyzer generator 

Introduction
 Lex is a tool for generating lexical analyzers in the C 

language. It was originally written by Mike Lesk and Eric 

Schmidt in 1975.

 Lex is capable of handling type 3 languages (regular

languages ).

 Lex is often used in combination with the syntax 

analyzer generator Yacc.
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LEX: lexical analyzer generator 

Principle
 Lex takes as input the definition of lexical units in the 

form of regular expressions.

 Lex generates a minimal deterministic finite automaton 

to recognize the lexical units.

 Lex produces the automaton in the form of a C

program.
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LEX: lexical analyzer generator 

Regular expressions in LEX (1)

Symbol Meaning

x The character 'x'

. Any character except \n

[xyz] Either x, or y, or z

[^bz] All characters except b and z

[a-z] Any character between a and z

[^a-z] All characters except those between a and z

R* Zero or more R, where R is any regular expression

R+ One or more R

R? Zero or one R (i.e., an optional R)

R{2,5} Between two and five R
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LEX: lexical analyzer generator 

Regular expressions in LEX (2)

Symbol Meaning

R{2,} Two or more R

R{2} Exactly two R

"[xyz\"foo" The string '[xyz"foo'

{NOTION} The expansion of the NOTION defined earlier

RS R followed by S

R|S R or S

R/S R, only if it is followed by S

^R R, but only at the beginning of a line

R$ R, but only at the end of a line

<<EOF>> End of file
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LEX: lexical analyzer generator 

Regular expressions Examples (1)

 whitespace [\t\n ]+ 

 letter         [A-Za-z] 

 digit10  [0-9] /* Base-10 digit*/ 

 digit16   [0-9A-Fa-f] /* Hexadecimal digit*/ 

 identifier   {letter}(_|{letter}|{digit10})*         

Or else identifier   [A-Za-z] [_A-Za-z0-9] *
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LEX: lexical analyzer generator 

Regular expressions Examples (2)

 digit         [0-9] 

 integer         {digit}+ 

 exponent    [eE][+-]?{integer} 

 realFP         {integer}("."{integer})?{exponent}?

 real              [+-]? [0-9] +("." [0-9] +)?
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LEX: lexical analyzer generator 

Structure of a LEX program
 A Lex description file consists of three parts:

❖ Declarations

%%

❖ Rules (Productions)

%% 

❖ Additional code

 None of the parts is mandatory.

 The symbol %% is used as a separator between the parts.
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LEX: lexical analyzer generator 

Structure of a LEX program (first part)
 First part: Declarations, may contains:

 Code written in the target language (C), enclosed between %{ and 

%}, Lex copies everything written between these markers as-is.

 Regular expressions defining non-terminal notions, to be used in 

the rest of the first part of the Lex file, as well as in the second part, 

by enclosing them in { }. These specifications take the form:

notion  regular expression
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LEX: lexical analyzer generator 

Structure of a LEX program (first part)
 Example :

%{ 

#include "calc.h" 

#include <stdio.h> 

#include <stdlib.h> 

%} 

/* Regular expressions*/ 

 Whitespaces   [\t\n ]+ 

Letter     [A-Za-z] 

Digit    [0-9] 

Identifier     {Letter}(_|{Letter}|{Digit})*
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LEX: lexical analyzer generator 
Structure of a LEX program (second part)

 Second part: Rules (Productions)

 This part is used to tell Lex what to do when it encounters a 

particular lexical unit. It can contain productions of the form:

                             regular expression   action

 The actions are written in the target language (C) and must be 

enclosed in { }.

If an action is absent, Lex copies the characters as-is to the standard 

output.
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LEX: lexical analyzer generator 
Structure of a LEX program (second part)

 Comments such as /* ... */ can only be placed within actions

enclosed in braces. Otherwise, Lex would interpret them as part 

of the regular expressions or actions, which would result in 

error messages.

 The variable yytext refers, within actions, to the characters 

matched by a regular expression. It is a character array of 

length yyleng (thus defined as char yytext[yyleng]).
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LEX: lexical analyzer generator 
Structure of a LEX program (second part)

 Example :

   %% 

   [ \t]+$        ; 

   [ \t]             printf(" "); 

 This program removes all unnecessary spaces in a file. 
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LEX: lexical analyzer generator

Structure of a LEX program (third part)

 Third part: Additional code:  

 In this optional part, you can include any code you want. If you 

leave it empty, Lex simply ignores it :

 main() { 

  yylex(); 

}.
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LEX: lexical analyzer generator 

Running LEX on Linux
 The LEX program runs as follows:

• A file, for example named test.l, containing the specification of 

the lexical analyzer to be generated, is compiled using the Lex 

compiler by running the lex command.

• The lex command generates the C code of the analyzer, 

which is placed in a file named lex.yy.c

• The GCC compiler is then used to compile lex.yy.c and 

produce an executable (e.g., a.out).Finally, the executable is 

loaded and run. 
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 lex  test.l

 gcc lex.yy.c  -o  test.exe -lfl

 ./test.exe

LEX: lexical analyzer generator 

Running LEX on Linux

Lex 

compiler

GCC 

compiler

test.exe

                     

Lex source 

program

test.l

lex.yy.c test.exe

Input stream
Sequence of 

lexical units
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LEX: lexical analyzer generator 

Example
/* just like Unix wc */

%{
int chars = 0;

int words = 0;

int lines = 0;

%}
%%

[a-zA-Z]+  { words++; chars += yyleng; }

\n     { chars++; lines++; }

.          { chars++; }

%%

main(int argc, char **argv)

{

 yyin = fopen(“lex.yy.c“, “r“);

 yylex();

printf(“lines=%d\n words=%d\n words=%d", lines, words, chars);

fclose(yyin);

}
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