
a.hettab@centre-univ-mila.dz

Chapter II.

Lexical analysis

Introduction

 Lexical analysis consists of transforming a set of characters from

the source program into lexical units (tokens) in order to

provide them to the syntax analyzer.

 The most common lexical units are :

• Keywords (for, if, …)

• Symbols (+, -, (,), …)

• Identifiers (any sequence of letters and digits that starts with a

letter)

• Numbers (any sequence of digits)

 Comments and whitespace are ignored during the lexical analysis

phase.
Chapter 02 – Lexical Analysis2

Introduction
In lexical analysis, the following concepts are distinguished:

 Lexical unit: corresponds to an entity (a concept) returned
by the lexical analyzer. For example, <, >, <=, >= are all
relational operators.

 Lexeme: is an instance of a lexical unit. For example, the
lexeme 6.28 is an instance of the lexical unit number.

 Pattern: associates lexemes with their corresponding lexical
unit.

Chapter 02 – Lexical Analysis3

Chapter 02 – Lexical Analysis4

Formal languages

Definitions:

 Let Σ be a set called the alphabet, whose elements are called
characters.

 A word (over Σ) is a sequence of characters (from Σ). We
denote :

• ɛ the empty word,

• uv the concatenation of the words u and v (concatenation is
associative, and ɛ is a neutral element).

• Σ ∗ the set of all words over Σ.

• Σ + the set of all non-empty words over Σ.

 A language over Σ is a subset L of Σ ∗.

Chapter 02 – Lexical Analysis5

Formal languages

Examples:

 Σ₁ is the alphabet, and L₁ is the set of words in the French
dictionary with all their variations (plurals, conjugations).
L₂ is the set of grammatically correct sentences in the French
language.

 Σ₂ is the set of ASCII characters, and L₃ consists of all the
pseudo-Pascal keywords: symbols, identifiers, and the set of
decimal integers…
L₄ is the set of pseudo-Pascal programs.

 Σ₃ is {a, b}, and L₅ is { aⁿbⁿ ∣ n ∈ ℕ } (all words composed of a
and b where the number of a’s equals the number of b’s).

Chapter 02 – Lexical Analysis6

Formal languages

Types of formal languages :

 The four types of formal languages are classified according to

Chomsky’s hierarchy, which organizes formal languages

based on their complexity.

 Type 0 languages (recursively enumerable languages):

These are the most general languages, which can be recognized

by a Turing machine. There are no restrictions on the form of

the production rules.

 Example:The language of all symbol strings, including infinite

or incomprehensible strings

Chapter 02 – Lexical Analysis7

Formal languages

Types of formal languages (continued):

 Type 1 languages (context-sensitive languages): These

languages are recognized by a non-deterministic Turing machine

with limited memory. The production rules are of the form

αAβ → αγβ, where A is a non-terminal symbol, and γ is not

empty.

Example : The language L = { aⁿbⁿcᵐ ∣ n, m ≥ 1 }, where each

string contains an equal number of symbols a and b, and some

number of c’s.

Chapter 02 – Lexical Analysis8

Formal languages

Types of formal languages (continued):

 Type 2 languages (context-free languages): These

languages are generated by context-free grammars, where

the production rules are of the form A → γ, with A being a

non-terminal and γ a string of terminals and/or non-terminals

or ɛ.

 Example : The language of well-balanced parentheses L = {()},

where each opening parenthesis corresponds to a closing

parenthesis.

Chapter 02 – Lexical Analysis9

Formal languages

Types of formal languages (continued):

 Type 3 languages (regular languages): These are the

simplest languages, which can be recognized by a finite

automaton. The production rules are of the form A → aB or

A → a, where A and B are non-terminals, and a is a terminal..

 Example : The language L={anbm∣n,m ≥0}, which contains

strings like ab, aabbb, aaabb, … etc.

Chapter 02 – Lexical Analysis10

Regular expressions

 Regular expressions represent a simple formalism for

describing certain simple languages (regular languages).

 They make it possible to describe lexical units in a

concise and compact way.

 The lexical analyzer generator LEX uses regular

expressions to specify its lexical units.

Regular expressions

Definition:

 Let a, b, etc. be letters of the alphabet Σ. M and N are regular

expressions, and L[M] is the language associated with M.

 A letter a denotes the language{a}.

 Epsilon: ɛ denotes the language{ɛ}.

 Concatenation: M N denotes the language L[M]]∩L[N].

 Alternative: M | N denotes the language L[M] ∪ L[N].

 Repetition: M∗ denotes the language (L[M]) ∗.

 M? stands for M ∣ ɛ et M+ stands for M M∗.

Chapter 02 – Lexical Analysis11

Chapter 02 – Lexical Analysis12

Regular expressions

Examples:

 letter: [A-Za-z]

 digit: [0-9]

 identifier: {letter}({letter}|{digit})*

 or else [A-Za-z][A-Za-z0-9]*

 Signed integer: [-+]?{digit}+

 or else [-+]?[0-9]+

 Real number: [-+]?{digit}+(,{digit}+)?

 or else [-+]? [0-9]+(,[0-9]+)?

Chapter 02 – Lexical Analysis13

Finite state automaton

 Languages are recognized by formal machines called

automata, which, given a word, are capable of determining

whether or not it belongs to a language.

 A language over an alphabet Σ is regular if and only if it is

recognized by a finite state automaton [Kleene’s

Theorem]. Thus, every regular expression M has an

equivalent automaton that recognizes L[M].

 A finite state automaton (FSA) is a model of a system

and its evolution—that is, a formal description of the system

and the way it behaves.

Chapter 02 – Lexical Analysis14

Finite state automaton

 A finite state automaton (FSA) onsists of a finite set of

states (graphically represented by circles), a transition

function describing the action that allows movement from

one state to another, an initial state, and one or more

final states.

 An FSA is therefore a directed graph where the nodes

correspond to the states and the arcs contain the letters of

the alphabet Σ.

Finite state automaton
 A finite state automaton M is a tuple (Q, Σ, δ, q₀, F)

where :

 Σ : is an alphabet;

 Q : is a finite set of states;

 δ : Q  Σ → Q is the transition function;

 q0 : is the initial state;

 F : is a set of final states.

Property :

 The language L(M) recognized by the automaton M is the
set { w | δ(q₀, w) ∈ F } of words that reach a final state
from the initial state of the automaton.

Chapter 02 – Lexical Analysis15

Chapter 02 – Lexical Analysis16

Finite state automaton
Example:

 Finite state automaton corresponding to the regular

expression ab*c(c*| b+c+) :

Σ = {a, b,c}

Q = {1, 2, 3}

δ = {(1, a)→2, (2, b)→2, (2, c)→3, (3, b)→2, (3, c)→3}

initial state = {1}

Final states: a single final state = {3}.

1 2 3a

c

b

b c

Figure II.1. Finite state automaton for ab*c(c*| b+c+).

Representation of an automaton

 The function δ with finite domain Q × Σ can be represented

by a two-dimensional matrix whose elements are :

 the states (for a deterministic automaton), or

 a set of states (for a non-deterministic automaton)

cba

--{2}→{1}

{3}{2}-{2}

{3}{2}-#{3}

Transition table of the previous automaton

Chapter 02 – Lexical Analysis17

Deterministic finite automaton (DFA) and

non-deterministic finite automaton (NFA)

DFA

 A finite state automaton is

deterministic if:

 For each letter and each

state, there is only one

outgoing transition.

And

 There are no

transitions via ɛ

Chapter 02 – Lexical Analysis18

NFA

 A finite state automaton is
non-deterministic if:

 For a given state and a
letter, there can be
multiple outgoing
transitions.

Or

 There can be
transitions via ɛ

Chapter 02 – Lexical Analysis19

Implementation of regular expressions

 To perform lexical analysis on computers, regular expressions are

transformed into finite state automata, whose implementation is

simple and whose recognition of lexical units is fast. This procedure

goes through the following four steps:

 1st step: Transformation of regular expressions into NFAs.

 2nd step: Transformation of NFAs into DFAs.

 3rd step: Minimization of DFAs.

 4th step: Implementation of minimal DFAs.

Transformation of a regular expression

into an NFA

Thompson’s Construction:

 Among the most commonly used methods for building finite

state automata from regular expressions is Thompson’s

Construction, which automatically generates an NFA from a

regular expression as follows:

 The regular expression is broken down into simple

components, and for each component, an automaton is built

according to Thompson’s basic rules. Then, the automata

obtained in the first step are combined to construct the final

automaton according to Thompson’s composition rules.

Chapter 02 – Lexical Analysis20

Thompson’s rules

Basic rules

 1st rule: used to construct an automaton for the

regular expression ε.

 2nd rule: used to construct an automaton for

the regular expression a.

e

a

Chapter 02 – Lexical Analysis21

Thompson’s rules

Composition rules

 3rd rule: Alternation R|S :

 4th rule: Concatenation RS :

 5th rule: Kleene star R* :

Chapter 02 – Lexical Analysis22

Chapter 02 – Lexical Analysis23

Thompson’s rules

Example

 The NFA obtained from the regular expression : a(b|c)*.

ε

0 1 2

3

5

4

6

7 8

a b

c

ε

ε

ε

ε
ε ε

ε

Figure II.2. NFA for the regular expression : a(b|c)*.

Transformation of an NFA into a DFA

Transformation algorithm

Transformation algorithm

 Data: An NFA defining the language N.

 Result: A DFA defining the same language as N.

 D is the transition table of the DFA.

The following functions are available:

 ε-closure(e) : the set of NFA states reachable from state e of the
NFA via ε-transitions (including state e).

 ε-closure(T) : the set of NFA states reachable from any state e
belonging to T via ε-transitions (including the set T itself).

 Move(T, a) : the set of NFA states to which there is a transition
in the NFA on symbol a from some state e belonging to T.

Chapter 02 – Lexical Analysis24

Chapter 02 – Lexical Analysis25

Transformation of an NFA into a DFA

Transformation algorithm
E0 = ε-closure(initial state of the NFA);

add E0 as the initial state of D (without marking it);

 while there exists an unmarked state E in D do

 mark E;

 for each character c in the alphabet do

 F = ε-closure(move(E, c));

 if F is not a state of D then

 add state F to D (without marking it);

 if any element of F is an accepting state of the NFA then

 F is an accepting state of D;

 end if

 end if

 add the transition E →F to D;

 end for

 end while

end

c

Transformation of an NFA into a DFA

Example

 Let’s take the example of the NFA from Figure II.2

corresponding to the regular expression a.(b|c)* :

Chapter 02 – Lexical Analysis26

ε

0 1 2

3

5

4

6

7 8

a b

c

ε

ε

ε

ε
ε ε

ε

Transformation of an NFA into a DFA

 Example
Construction of the DFA:

 ε-closure(0) = {0}

 Transition table D of the DFA:

 Initial state: ε-closure(0) = {0} = A

 Final states : B, C , D

Chapter 02 – Lexical Analysis27

a b c

→ A ={0} {1,2,3,5,8}=B - -

B#={1,2,3,,5,8} - {4,7,8,2,3,5}=C {6,7,8,2,3,5}=D

C#={4,7,8,2,3,5} - C D

D#={6,7,8,2,3,5} C D

Chapter 02 – Lexical Analysis28

Transformation of an NFA into a DFA

Example

a b c

→ A B - -

B# - C D

C# - C D

D# C D

A B

C

D

a
b

c

b

c b

c

Figure II.4. DFA for the regular expression : a.(b|c)*

 The DFA obtained for the regular expression a.(b|c)* using the

transformation algorithm.

Minimization of the DFA

 To perform lexical analysis, it is preferable that the

DFA’s transition table be as small as possible to save

memory.

 Theorem: There exists a unique deterministic

automaton with a minimal number of states that

recognizes a rational language L [Myhill-Nerode].

 Partition refinement algorithms (e.g., Moore’s

algorithm and Hopcroft’s algorithm) are the simplest to

use.

Chapter 02 – Lexical Analysis29

Chapter 02 – Lexical Analysis30

Before using partition refinement algorithms, it is

necessary to remove inaccessible states and dead

states.

 Inaccessible states are states that cannot be reached

from the initial state.

 Dead states are states from which there is no path to a final state

Minimization of the DFA

A B

C

D

a
b

c

b

c b

c

E

a

F

a

Inaccessible

state

Dead state

Chapter 02 – Lexical Analysis31

Minimization of the DFA
Algorithm

Let A= (Q, Σ, δ, q0, F) be a deterministic finite automaton

- Initially: Create two state classes C1 and C2 // C1 contains the final

states (F) and C2 contains the non-final states (Q \ F)

Repeat

 For each partition Ci do

 For each input symbol a do

 End for

 End for

Until there are no two classes left to separate.

If there exist two different states q₁ and q₂ belonging to

Cᵢ that, when reading symbol a, lead to states belonging to

two different classes, then

 Create a new class Cⱼ and separate q₁ from q₂.

End if

Minimization algorithm

Example

Chapter 02 – Lexical Analysis32

 Let’s take the example of the NFA from Figure II.4

corresponding to the regular expression a.(b|c)*

A B

C

D

a
b

c

b

c b

c

Chapter 02 – Lexical Analysis33

Minimization algorithm
Example

 Let’s take the example of the NFA from Figure II.4

corresponding to the regular expression a.(b|c)*.

 Initially:

: C1: {A} , C2:{ B,C,D}

B---b--> C C---b--> C D---c--> D

 B---c--> D C---c--> D D---c--> D

 1st Iteration:

 : C1: {A} , C2:{ B,C,D}

 We cannot split {B, C, D} since B, C, and D are inseparable states.

Chapter 02 – Lexical Analysis34

Minimization algorithm
Example

A B
a

b|c

 Transition table of the minimal DFA.

a b c

→A B -

B# - B B

Figure II.5. Minimal DFA for the regular expression: a.(b|c)*

Regular expressions and automaton

Example 2

Chapter 02 – Lexical Analysis35

 The NFA obtained from the regular expression: d((a|b)*|bc)*a.

 Regular expression →NFA

0 1 2

3 4

5

6

7

8

9 10 11

12 13 14

15 16d

a

b

b c

a

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε ε

ε

ε

ε ε

Chapter 02 – Lexical Analysis36

Regular expressions and automaton

Example 2
 NFA →DFA

a b c d

→A

= {0}

- - - {1,2,3,4,5,6,10,11

,12,15}=B

B {7,9,10,11,15,4,5,6,2

,3,12,16}=C

{8,13,9,10,11,15,4,

5,6,2,3,12}=D

- -

C# C D - -

D C D {14,11,15,2,3,4,5,

6,10,12}=E

-

E C D - -

A B

D

C

E

d
b

a

b

a b

a

a

b cFigure II.6. DFA for the

regular expression:

d((a|b)*|bc)*a

Chapter 02 – Lexical Analysis37

Regular expressions and automaton
Example 2
 DFA → Minimal DFA

 Initially: : {A,B,E,D} , {C}

 1st Iteration:  : {A},{B,E},{D}, {C}
 A → Ф

 B → C B → D B → Ф B → Ф

 E → C E → D E → Ф E → Ф

 D → C D → D D → E

 2nd Iteration: : {A},{D},{B,E}, {C}

  = . We cannot split {B, E} since B and E lead to
the same states for all input symbols.

a

a

a

a

b

b

b

c

c

c

d

d

Chapter 02 – Lexical Analysis38

Regular expressions and automaton
Example 2

a b c d

→A - - - BE

BE C D

D C D BE -

C# C D - -

b

Figure II.7. Minimal DFA for the regular expression: d((a|b)*|bc)*a

A
BE C

d

b

a

a

D

a

b

c

Implementation of minimal DFAs

Recognition algorithm

 Input: a string of input characters S ending with a special

character "#".

 Output: whether the string is recognized by the automaton or

not.

 The following functions are available :

✓Move(e, c): returns the state of the automaton to which there

is a transition from state e on the input character c.

✓NextChar() : returns the next character to be analyzed from

the string S.

Chapter 02 – Lexical Analysis39

e:=e0;

c:=NextChar();

while (c  '#' et e  ) do

 e:=Move (e,c);

c:=NextChar ();

end while ;

if eF then

 "Chaine acceptée" ;

else

 "Chaine refusée" ;

End if

Chapter 02 – Lexical Analysis40

Implementation of minimal DFAs

Recognition algorithm

Tools for implementing regular expressions

Chapter 02 – Lexical Analysis

 Practical implementation of finite state automata.

 Using existing libraries such as Java, C++, PHP, etc.

 Using lexical analyzer generators: Lex, Flex, Jlex, etc.

41

Chapter 02 – Lexical Analysis42

LEX: lexical analyzer generator

Introduction
 Lex is a tool for generating lexical analyzers in the C

language. It was originally written by Mike Lesk and Eric

Schmidt in 1975.

 Lex is capable of handling type 3 languages (regular

languages).

 Lex is often used in combination with the syntax

analyzer generator Yacc.

Chapter 02 – Lexical Analysis43

LEX: lexical analyzer generator

Principle
 Lex takes as input the definition of lexical units in the

form of regular expressions.

 Lex generates a minimal deterministic finite automaton

to recognize the lexical units.

 Lex produces the automaton in the form of a C

program.

Chapter 02 – Lexical Analysis44

LEX: lexical analyzer generator

Regular expressions in LEX (1)

Symbol Meaning

x The character 'x'

. Any character except \n

[xyz] Either x, or y, or z

[^bz] All characters except b and z

[a-z] Any character between a and z

[^a-z] All characters except those between a and z

R* Zero or more R, where R is any regular expression

R+ One or more R

R? Zero or one R (i.e., an optional R)

R{2,5} Between two and five R

Chapter 02 – Lexical Analysis45

LEX: lexical analyzer generator

Regular expressions in LEX (2)

Symbol Meaning

R{2,} Two or more R

R{2} Exactly two R

"[xyz\"foo" The string '[xyz"foo'

{NOTION} The expansion of the NOTION defined earlier

RS R followed by S

R|S R or S

R/S R, only if it is followed by S

^R R, but only at the beginning of a line

R$ R, but only at the end of a line

<<EOF>> End of file

Chapter 02 – Lexical Analysis46

LEX: lexical analyzer generator

Regular expressions Examples (1)

 whitespace [\t\n]+

 letter [A-Za-z]

 digit10 [0-9] /* Base-10 digit*/

 digit16 [0-9A-Fa-f] /* Hexadecimal digit*/

 identifier {letter}(_|{letter}|{digit10})*

Or else identifier [A-Za-z] [_A-Za-z0-9] *

Chapter 02 – Lexical Analysis47

LEX: lexical analyzer generator

Regular expressions Examples (2)

 digit [0-9]

 integer {digit}+

 exponent [eE][+-]?{integer}

 realFP {integer}("."{integer})?{exponent}?

 real [+-]? [0-9] +("." [0-9] +)?

Chapter 02 – Lexical Analysis48

LEX: lexical analyzer generator

Structure of a LEX program
 A Lex description file consists of three parts:

❖ Declarations

%%

❖ Rules (Productions)

%%

❖ Additional code

 None of the parts is mandatory.

 The symbol %% is used as a separator between the parts.

Chapter 02 – Lexical Analysis49

LEX: lexical analyzer generator

Structure of a LEX program (first part)
 First part: Declarations, may contains:

 Code written in the target language (C), enclosed between %{ and

%}, Lex copies everything written between these markers as-is.

 Regular expressions defining non-terminal notions, to be used in

the rest of the first part of the Lex file, as well as in the second part,

by enclosing them in { }. These specifications take the form:

notion regular expression

Chapter 02 – Lexical Analysis50

LEX: lexical analyzer generator

Structure of a LEX program (first part)
 Example :

%{

#include "calc.h"

#include <stdio.h>

#include <stdlib.h>

%}

/* Regular expressions*/

 Whitespaces [\t\n]+

Letter [A-Za-z]

Digit [0-9]

Identifier {Letter}(_|{Letter}|{Digit})*

Chapter 02 – Lexical Analysis51

LEX: lexical analyzer generator
Structure of a LEX program (second part)

 Second part: Rules (Productions)

 This part is used to tell Lex what to do when it encounters a

particular lexical unit. It can contain productions of the form:

 regular expression action

 The actions are written in the target language (C) and must be

enclosed in { }.

If an action is absent, Lex copies the characters as-is to the standard

output.

Chapter 02 – Lexical Analysis52

LEX: lexical analyzer generator
Structure of a LEX program (second part)

 Comments such as /* ... */ can only be placed within actions

enclosed in braces. Otherwise, Lex would interpret them as part

of the regular expressions or actions, which would result in

error messages.

 The variable yytext refers, within actions, to the characters

matched by a regular expression. It is a character array of

length yyleng (thus defined as char yytext[yyleng]).

Chapter 02 – Lexical Analysis53

LEX: lexical analyzer generator
Structure of a LEX program (second part)

 Example :

 %%

 [\t]+$;

 [\t] printf(" ");

 This program removes all unnecessary spaces in a file.

Chapter 02 – Lexical Analysis54

LEX: lexical analyzer generator

Structure of a LEX program (third part)

 Third part: Additional code:

 In this optional part, you can include any code you want. If you

leave it empty, Lex simply ignores it :

 main() {

 yylex();

}.

Chapter 02 – Lexical Analysis55

LEX: lexical analyzer generator

Running LEX on Linux
 The LEX program runs as follows:

• A file, for example named test.l, containing the specification of

the lexical analyzer to be generated, is compiled using the Lex

compiler by running the lex command.

• The lex command generates the C code of the analyzer,

which is placed in a file named lex.yy.c

• The GCC compiler is then used to compile lex.yy.c and

produce an executable (e.g., a.out).Finally, the executable is

loaded and run.

Chapter 02 – Lexical Analysis56

 lex test.l

 gcc lex.yy.c -o test.exe -lfl

 ./test.exe

LEX: lexical analyzer generator

Running LEX on Linux

Lex

compiler

GCC

compiler

test.exe

Lex source

program

test.l

lex.yy.c test.exe

Input stream
Sequence of

lexical units

Chapter 02 – Lexical Analysis57

LEX: lexical analyzer generator

Example
/* just like Unix wc */

%{
int chars = 0;

int words = 0;

int lines = 0;

%}
%%

[a-zA-Z]+ { words++; chars += yyleng; }

\n { chars++; lines++; }

. { chars++; }

%%

main(int argc, char **argv)

{

 yyin = fopen(“lex.yy.c“, “r“);

 yylex();

printf(“lines=%d\n words=%d\n words=%d", lines, words, chars);

fclose(yyin);

}

	Diapositive 1 Chapter II. Lexical analysis
	Diapositive 2 Introduction
	Diapositive 3 Introduction
	Diapositive 4
	Diapositive 5
	Diapositive 6
	Diapositive 7
	Diapositive 8
	Diapositive 9
	Diapositive 10
	Diapositive 11 Regular expressions
	Diapositive 12
	Diapositive 13
	Diapositive 14
	Diapositive 15 Finite state automaton
	Diapositive 16
	Diapositive 17 Representation of an automaton
	Diapositive 18 Deterministic finite automaton (DFA) and non-deterministic finite automaton (NFA)
	Diapositive 19
	Diapositive 20 Transformation of a regular expression into an NFA
	Diapositive 21 Thompson’s rules Basic rules
	Diapositive 22 Thompson’s rules Composition rules
	Diapositive 23
	Diapositive 24 Transformation of an NFA into a DFA Transformation algorithm
	Diapositive 25
	Diapositive 26 Transformation of an NFA into a DFA Example
	Diapositive 27 Transformation of an NFA into a DFA Example
	Diapositive 28
	Diapositive 29 Minimization of the DFA
	Diapositive 30
	Diapositive 31
	Diapositive 32 Minimization algorithm Example
	Diapositive 33
	Diapositive 34
	Diapositive 35 Regular expressions and automaton Example 2
	Diapositive 36 Regular expressions and automaton Example 2
	Diapositive 37
	Diapositive 38
	Diapositive 39 Implementation of minimal DFAs Recognition algorithm
	Diapositive 40 Implementation of minimal DFAs Recognition algorithm
	Diapositive 41 Tools for implementing regular expressions
	Diapositive 42
	Diapositive 43
	Diapositive 44
	Diapositive 45
	Diapositive 46
	Diapositive 47
	Diapositive 48
	Diapositive 49
	Diapositive 50
	Diapositive 51
	Diapositive 52
	Diapositive 53
	Diapositive 54
	Diapositive 55
	Diapositive 56
	Diapositive 57

