
a.hettab@centre-univ-mila.dz

Chapter I.

Introduction to Compilers (Objectives)

Introduction to Compilers2

What is a compiler?

 A compiler is a translator that transforms a program written in
a language L1 into another program written in a language L2.

 The language L1, in which the original program is written, is
the source language:

 e.g., C, C++, Pascal…

 The language L2, generated from language L1, is the target
language (or object language) :

 e.g., EXE,…

 In practice, compilation often stops at an intermediate
language (assembly or even the language of an abstract
machine).

Introduction to Compilers3

What is a program?

 A program is a set of operations that describe how to produce

results from inputs.

 The compiler rejects programs that contain errors (static

errors);

 otherwise, it builds a new program (the object program) that

the machine can execute on different inputs.

 The execution of the object code on a particular input may fail

to terminate or fail to produce a result (dynamic error).

Introduction to Compilers4

Source program:

C language

1 <squareSum>:

2 0: 0f af ff imul %edi, %edi

3 3: 0f af f6 imul %esi, %esi

4 6: 8d 04 3e lea (%rsi, %rdi,1), %eax

5 9: c3 retq

.

Example of compilation

Generated

machine code

Generated Assembler

Program

1 int squareSum (int a, int b)

2 {

3 return a*a+b*b;

4 }

Compiler gcc

Assembler

Compiler vs Interpreter

Compiler

Introduction to Compilers5

 A compiler takes the entire program and converts it into object

code, which is usually stored in a file. The object code is also

referred to as binary code and can be executed directly by the

machine after linking.

 Example: C, C++, Pascal …

Source code Compiler
Machine

language
Output

Introduction to Compilers6

Compiler vs Interpreter
Interpreter

 An interpreter directly executes instructions written in a

programming language one after another without converting them

into object code or machine code.

 Example: BASIC, Perl, Python, Ruby, PHP ….

Source code Interpreter Output

Introduction to Compilers7

Compiler vs Interpreter
Advantage and disadvantage

Advantage Disadvantage

Interpreter Simple development process

(especially debugging))

Inefficient translation process and

slow execution speed

Compiler Delivers the complete ready-to-

use and executable machine

code to the processor

Any modification of the code

requires a new translation (error

correction, software extension,

etc.)

Introduction to Compilers8

Compiler vs Interpreter
just-in-time compiler (JIT compiler)

 Just-in-time compilation is a hybrid solution that translates the

program’s code during execution, similar to an interpreter. It

combines the two previous methods to take advantage of their

benefits. In this way, the high execution speed (enabled by the

compiler) is complemented by a simplified development process

(enabled by the Interpreter).

 Example: JAVA…

What is expected of a compiler? (1)

Introduction to Compilers9

 Error detection: A compiler must be able to detect static

errors such as :

• Malformed identifiers,

• Unclosed comments,

• Incorrect syntactic constructs,

• Undeclared identifiers,

• Ill-typed expressions, e.g., if 3 then "toto" else 4.5,

• Uninstantiated references.

Introduction to Compilers10

What is expected of a compiler? (2)

 Efficiency: A compiler should be as fast as possible.

 Correctness: The compiled program must represent the

same computation as the original program.

 Modality: Use of separate compilation during large-scale

development.

Structure of a compiler

Introduction to Compilers11

Sequence of lexical units (tokens)

Syntax tree (Parse tree)

Decorated syntax tree (Annotated syntax tree)

Intermediate code

Optimized intermediate code

Lexical analysis

Introduction to Compilers12

 Lexical analysis consists of transforming code in textual form

into a sequence of tokens (lexical units), thereby separating

keywords, variables, integers, etc.

 Comments and the spaces separating the characters that form the

lexical units are removed during this phase.

 The lexical analyzer assigns each lexical unit a code specifying its

type and a value (a pointer to the symbol table).

Example

Introduction to Compilers13

for i :=1 to vmax do a :=a+i;
We can extract the following sequence of tokens:
for : keyword
i : identifier
:= : assignment
1 : integer
to : keyword
vmax : identifier
do : keyword
a : identifier
:= : assignment
a : identifier
+ : arithmetic operator
i : identifier
; : separator

Introduction to Compilers14

Symbol table
 A symbol table is a centralization of the information associated with

the identifiers of a computer program.

 In a symbol table, you can find information such as the type, memory

location, etc.

 Generally, the table is created dynamically. An initial portion is created

at the beginning of compilation, and then, it is completed as needed.

 The first time a symbol is encountered (according to the language’s

visibility rules), an entry is created in the table.

Introduction to Compilers15

Then, the previous statement can be expressed as follows: 10, 1000, 100,

5000, 11, 1002, 12, 1001, 100, 1001, 101, 1000, 13

Symbol table
Type of the lexical unit (tokan unit)lexical unit (tokan)N°

keywordfor10

keywordto11

keyworddo12

separator;13

……………

assignment:=100

arithmetic operator+101

….….…

identifieri1000

identifiera1001

identifiervmax1002

…..….

integer15000

Syntax analysis (Parsing)

Introduction to Compilers16

 This phase consists of grouping the lexical units of the source

program into grammatical structures (i.e., verifying whether a

program is correctly written according to the grammar that

specifies the syntactic structure of the language).

In general, this analysis is represented by a tree.

Example

Introduction to Compilers17

 Let us consider the following grammar for the for loop:

 <Instruction> → <Assignment> ; | <For instruction>

 <Assignment> → ident := <Expression>

 <For instruction> → for <Initialization> to <Expression> do

<Instruction>

 <Initialization> → <Location> := <Expression> | <Location>

 <Location> → ident | const

 <Expression> → <Location> | <Location> op <Location>

Syntax tree (Parse tree)

Introduction to Compilers18

 After syntax analysis, we obtain the following tree for the
statement: for i :=1 to vmax do a :=a+i;

Semantic analysis

Introduction to Compilers19

 Semantic analysis is used to specify the nature of the

computations represented by a program by verifying that the

operands of each operator comply with the specifications of

the source language.

 In general, this analysis is represented by a decorated syntax

tree

Example:

 It is necessary to verify that the variable ‘i’ indeed has the
type ‘integer,’ and that the variable ‘a’ is indeed a number.
This operation is performed by traversing the syntax tree and
checking at each level that the operations are correct.

Intermediate code generation

Introduction to Compilers20

 After the semantic analysis phases, some compilers produce an

intermediate representation, a kind of code for an abstract

machine.

 The "three-address code" intermediate form is widely used.

 Using intermediate code offers several advantages:

• it is relatively easy to translate intermediate code into object code;

• the intermediate representation allows optimizations that are

independent of the target language (object code).

Example: Java uses a specific intermediate form: bytecode. Bytecode

can be executed on any platform using the Java Virtual Machine

(JVM).

Intermediate code optimization (1)

Introduction to Compilers21

 Optimization aims to improve the intermediate code in order to

enhance its performance by reducing execution time or/and

memory usage.

 Some optimization operations include :
 Loop-invariant code motion :
The goal is to extract from the loop body any parts of the code
that are invariants (requiring only a single execution). This reduces
the total number of executed instructions.

Example. Let the following

intermediate code be:

for (int i = 0; i < n; i++) {

x = y + z;

a[i] = 6 * i + x * x; }

After moving the invariant code, we

obtain:

x = y + z;

temp1 = x * x;

for (int i = 0; i < n; i++) {

a[i] = 6 * i + temp1; }

Introduction to Compilers22

Intermediate code optimization (2)

 Some optimization operations include :
 Dead code elimination :

The compiler can recognize parts of the code that are dead (the
reason may be a programming error).

Example . Instructions that are unreachable due to jump statements are considered

dead code and can be eliminated :

if 1 <> 0 goto label

i := a[k]

k := k + 1

label:

Introduction to Compilers23

Intermediate code optimization (3)
 Some optimization operations include :

 Common subexpression elimination :
When the value of an expression is computed in multiple places in
the program, the optimizer stores the result of this expression and
reuses it instead of recalculating it.

Example . Let the following

intermediate code be :

t6 = 4 * i

x = a[t6]

t7 = 4 * i

t8 = 4 * j

t9 = a[t8]

a[t7] = t9

t10 = 4 * j

a[t10] = x

After eliminating common subexpressions

(and applying some other optimizations),

we obtain:

t6 = 4 * i

x = a[t6]

t8 = 4 * j

t9 = a[t8]

a[t6] = t9

a[t8] = x

Object code generation

Introduction to Compilers24

 This phase produces object code by :

 Choosing memory locations for the data;

 Selecting machine code to implement the intermediate code

instructions;

 Allocating registers.

Example: Here is the

following optimized

intermediate code :

temp1 := 60.0 * id3

id1 := id2 + temp1

Here is the object code generated using

registers R1 and R2 :

MOVF id3, R2

MULF #60.0, R2

MOVF id2, R1

ADDF R2, R1

MOVF R1, id1

Introduction to Compilers25

Logical phases

of compiling an

instruction

References

Introduction to Compilers26

 Compilateurs Principes, techniques et outils. Alfred

V.Aho, Ravi Sethi, Jeffrey D.Ullman. Pearson. Paris France.

2007.

	Diapositive 1 Chapter I. Introduction to Compilers (Objectives)
	Diapositive 2
	Diapositive 3
	Diapositive 4 Example of compilation
	Diapositive 5 Compiler vs Interpreter Compiler
	Diapositive 6
	Diapositive 7
	Diapositive 8
	Diapositive 9 What is expected of a compiler? (1)
	Diapositive 10
	Diapositive 11 Structure of a compiler
	Diapositive 12 Lexical analysis
	Diapositive 13 Example
	Diapositive 14
	Diapositive 15
	Diapositive 16 Syntax analysis (Parsing)
	Diapositive 17 Example
	Diapositive 18 Syntax tree (Parse tree)
	Diapositive 19 Semantic analysis
	Diapositive 20 Intermediate code generation
	Diapositive 21 Intermediate code optimization (1)
	Diapositive 22
	Diapositive 23
	Diapositive 24 Object code generation
	Diapositive 25
	Diapositive 26 References

