Chapter |I.

Introduction to Compilers (Objectives)

a.hettab(@centre-univ-mila.dz

e
What is a compiler?

e A Compiler is a translator that transforms a program written in
a language L1 into another program written in a language L2.

® The language L1, in which the original program is written, is
the source language:

®ec.g,C,C++,Pascal ...

® The language L2, generated from language L1, is the target
language (or object language) :
® c.g., EXEL,...

® In practice, compilation often stops at an intermediate

language (assembly or even the language of an abstract
machine).

@ Introduction to Compilers

e

What is a program?

® A program is a set of operations that describe how to produce

results from inputs.

® The compiler rejects programs that contain errors (static

errors);

® otherwise, it builds a new program (the object program) that

the machine can execute on different inputs.

® The execution of the object code on a particular input may fail

to terminate or fail to produce a result (dynamic error).

@ Introduction to Compilers

d Example of compilation

Source program
C language
Generated

machine code

Generated Assembler
Program

WNMAWD00000000000NHO00NADODNAD
000AkoO00000000000000000000000

offfwr+0odNMYNI00D00YFN00rNN00
00dkHD0000000000004000040000%0

0000000R0000000000040000H0D00N
0000000MO000000000000000000000

00000AHOOANMYNYOokOr0OkOrOOLaM
HOODOnOokooooooooADofoA0ofRoHCOOy

NHH(wD0000000000NHD00NAHD00NHDD
0o004koo00000000000000000000000

ool oA000U0000Hooo¥noo0nR000N
0000ko00000000000%90000Y0000400

Assembler

C0o0o000000000000ND0A000000000ND
C0o0o000000000000000000000000000

Q
Q
o0
S
D)

=
o
£
)

@)

(alafalu]a}y[=[a]aaYa] s aT]aYulu]u] Yu}u]iTul¥fu}u]i u] fu}
0000Q00ORNMNLNA000LOHDONOHO0KD

000kDO0O000000000A000NHO0DONADDD
0+00K0000000000000000000000000

(%orsi, %rdi,1), %eax

40U P0A0000000NDYNOOORODON]
0(Jom4WO00000000000000%¥0000%000

1 %edi, %edi

1 %esi, %esi

0r00000NKO000000040000-0000MNa0
ooooo00oOMoO0O000000000000000000

b

imu
lea

1mu

OQ000ONOONNNNNNNORDOKORO0KONDO
0(Jo00oONNHO0000000M0A00VOHO0ROH

400d4wON00000000000NHO0ONHDOON
HMOn)kO00000000000000000000000

Nowdn 0oLk LLOYA000RN0O0N00
nEomt44110000000000009000040000

retq

oooooodooARHnELHO000H0000HD00
000000000AAO0AD0000000000000000

ogdoooonOkwrnrOrmOOLoMIOkOMOOY
ordnoooooookAkinfoodoofodoofado

wn
—
-~
=
=
o
O
O
)
=
o
B
Q
=]
-
@)
—
)
=
—

Of af ff
Of af f£6
8d 04 3e

c3

000000000000000000000000000000
DT lwodnm#nwron 00 17 juoduaFnan0n
o =t U L LU L L LY L L LY L L L LD DD D D
fufubiQudugofufoQufugofdifofogofaboJuffudulugogfifafugig)
000000000000000000000000000000
000000000000000000000000000000
0oo0oo0000000000000000000000000
0oo0oo0000000000000000000000000

return a*a+b*b
1 <squareSum>

2 0
3 3
59

4 6

~
0
)
k=
(¢}
-
k=

~"
)
D
()
—~
(o]
i}

o
wn
)
k=
—

4 .
Compiler vs Interpreter

Compiler

* A compiler takes the entire program and converts it into object
code, which is usually stored in a file. The object code is also
referred to as binary code and can be executed directly by the

machine after linking.

* Example: C,C++, Pascal ...

Machine
Source code | o8 Compiler —

language

@ Introduction to Compilers

Compiler vs Interpreter

Interpreter

® An interpreter directly executes instructions written in a

programming language one after another without converting them

into object code or machine code.

* Example: BASIC, Perl, Python, Ruby, PHP

m—p Interpreter — Output

Introduction to Compilers

4 N
Compiler vs Interpreter
Advantage and disadvantage

Advantage Disadvantage
Interpreter Simp]e deve]opment process Inefficient translation process and
(especially debugging)) slow execution speed
Compiler Delivers the complete ready-to- Any modification of the code
use and executable machine requires a new translation (error
code to the processor correction, software extension,
etc.)

@ Introduction to Compilers /

Compiler vs Interpreter

just-in-time compiler (JIT compiler)

* Just-in-time compilation is a hybrid solution that translates the
program’s code during execution, similar to an interpreter. It
combines the two previous methods to take advantage of their
benetits. In this way, the high execution speed (enabled by the
compiler) is complemented by a simplified development process

(enabled by the Interpreter).

* Example: JAVA...

@ Introduction to Compilers

e

What is expected of a compiler? (1)

e Error detection: A compiler must be able to detect static

errors such as :

Malformed identifiers,

Unclosed comments,

Incorrect syntactic constructs,

Undeclared identifiers,

[lI-typed expressions, e.g., if 3 then "toto" else 4.5,

Uninstantiated references.

@ Introduction to Compilers

e
What is expected of a compiler? (2)

° Efficiency: A compiler should be as fast as possible.

e Correctness: The compiled program must represent the

same computation as the original program.

° Modality: Use of separate compilation during large—scale

development.

@ Introduction to Compilers

- Structure of a compiler

Source Code

l

v

Lexical Analysis

v

Sequence of lexical units (tokens)

v

Syntax Analysis

Syntax tree (Parse tree)

Semantic Analysis

Symbol Table Decorated syntax treeg(Annotated syntax tree)

Intermediate Code
Generation

v

v v

Error Handling

A A >

+ Intermediate code

Code Optimization

Optimized intermediate code

Code Generation

v

:

Machine Language Code

@ Introduction to Compilers

Lexical analysis

e [exical analysis consists of transforming code in textual form
into a sequence of tokens (lexical units), thereby separating

keywords, variables, integers, etc.

e Comments and the spaces separating the characters that form the

lexical units are removed during this phase.

® The lexical analyzer assigns each lexical unit a code specifying its

type and a value (a pointer to the symbol table).

@ Introduction to Compilers

e

Example

for1:=1 to vimax do a :=a+i;
We can extract the following sequence of tokens:
for : keyword

1 : identifier

= assignment

1: integer

to : keyword

vmax : identifier

do : keyword

a : identifier

:= :assignment

a : identifier

+ : arithmetic operator

1 : identifier

5 - separator

@ Introduction to Compilers

e

Symbol table

o A symbol table is a centralization of the information associated with

the identifiers of a computer program.

® In a symbol table, you can find information such as the type, memory

location, etc.

® Generally, the table is created dynamically. An initial portion is created

at the beginning of compilation, and then, it is completed as needed.

® The first time a symbol is encountered (according to the language’s

visibility rules), an entry is created in the table.

@ Introduction to Compilers

4 ™
Symbol table

lexical unit (tokan) Type of the lexical unit (tokan unit)

10 for keyword

11 to keyword

12 do keyword

13 0 separator

100 = assighment

101 i arithmetic operator
1000 i identifier

1001 a identifier

1002 vmax identifier

5000 1 integer

Then, the previous statement can be expressed as follows: 10, 1000, 100,
5000, 11, 1002, 12, 1001, 100, 1001, 101, 1000, 13

@ Introduction to Compilers /

Syntax analysis (Parsing)

® This phase consists of grouping the lexical units of the source
program into grammatical structures (i.e., veritying whether a
program is correctly written according to the grammar that
specifies the syntactic structure of the language).

In general, this analysis is represented by a tree.

@ Introduction to Compilers

e
Example

® [et us consider the following grammar for the for loop:
¢ <Instruction> — <Assignment> ; | <For instruction>
° <Assignment> — 1dent := <Expression>

e <For instruction> — for <Initialization> to <Expression> do

<Instruction>
* <lInitialization> — <Location> := <Expression> | <Location>
¢ <Location> — ident | const

* <Expression> — <Location> | <Location> op <Location>

@ Introduction to Compi]ers

Syntax tree (Parse tree)

* After syntax analysis, we obtain the following tree for the
statement: for 1 :=1 to vmax do a :=a+1;

Instruction

Instruction For

|
|\ for :]niﬁalizaﬁon
|

S

l

Location

Expression

Ident: i

@ Introduction to Compilers

Location

Cste: 1 H\'l

l

Expression

Location

/" Ident:

Vinax

o

Instmction

[

Assignment

J

CD

(Iﬂﬂ!ﬂtaj |i :|= J

Expression

Location | [op: +

S -

(Ident: a)

| | Location

Ident: i '

/

Semantic analysis

¢ Semantic analysis is used to specify the nature of the
computations represented by a program by Verifying that the
operands of each operator comply with the specifications of

the source language.

® In general, this analysis is represented by a decorated syntax
tree

Example:

® It is necessary to verity that the variable i’ indeed has the
type ‘integer, and that the variable ‘a’ is indeed a number.
This operation is performed by traversing the syntax tree and
checking at each level that the operations are correct.

@ Introduction to Compi]ers

e
Intermediate code generation

* After the semantic analysis phases, some compilers produce an
intermediate representation, a kind of code for an abstract

machine.
¢ The "three-address code" intermediate form is widely used.

* Using intermediate code offers several advantages:
* itis relatively easy to translate intermediate code into object code;

* the intermediate representation allows optimizations that are

independent of the target language (object code).

Example: Java uses a specific intermediate form: bytecode. Bytecode

can be executed on any platform using the Java Virtual Machine
VM)

@ Introduction to Compilers /

e
Intermediate code optimization (1)

® Optimization aims to improve the intermediate code in order to
enhance its performance by reducing execution time or/and

QOOI'y usage.

* Some optimization operations include :
® Loop-invariant code motion :
The goal is to extract from the loop body any parts of the code
that are invariants (requiring only a single execution). This reduces
the total number of executed instructions.

Example. Let the following After moving the invariant code, we
intermediate code be: obtain:

for (inti = 0;i <nj;it+) { X =y Tz

x =y +tz templ = x * x;

ali] =6 *i+x*x;} for (inti = 0;i <nj;it+) {

ali] = 6 *i + templ; }

@ Introduction to Compilers

e
Intermediate code optimization (2)

* Some optimization operations include :
* Dead code elimination :
The compiler can recognize parts of the code that are dead (the
reason may be a programming error).

Example . Instructions that are unreachable due to jump statements are considered

dead code and can be eliminated :

if 1 <> 0 goto label
1:=a[k]

k:=k+1

label:

@ Introduction to Compilers

e
Intermediate code optimization (3)

* Some optimization operations include :
¢ Common subexpression elimination :
When the value of an expression is computed in multiple places in
the program, the optimizer stores the result of this expression and
reuses it instead of recalculating it.

Example . Let the following After eliminating common subexpressions
intermediate code be : (and applying some other optimizations),
t6 = 4 * i we obtain:

X = a[té] t6 = 4 %

7 = 4% X = a[t6]

t8 = 4 *j t8 = 4 *j

t9 = a[t8§] t9 = a[t8§]

a[t7] = t9 a[t6] = t9

t10 = 4 * a[t8] = x

a[t10] = x

@ Introduction to Compilers

Object code generation

® This phase produces object code by :
® Choosing memory locations for the data;

° Selecting machine code to implement the intermediate code

instructions;

° Allocating registers.

Example: Here is the Here is the object code generated using
following optimized registers R1 and R2 :
intermediate code : MOVFid3, R2
templ := 60.0 *id3 MULF #60.0, R2
id1 :=id2 + templ MOVEid2, R1
ADDF R2, R1
MOVE R1, id1

@ Introduction to Compilers

8

Logical phases
of compiling an
instruction

ad B3

Introduction to Compilers

Symbol table

por = poslnit + vit * &0
|

Lexical analvziz

[]
(1) aff 1d(2) add 1d(3) mul nbr(60)
]

Fymtax analpris

pos

& = &

posinit

vit

semantic analyziz

[]
aff

wiy” T addReal

.dizj"’f ™~ mulReal

i3y intToReal

I
&0

intermediate code generation

L
tmpl <«- intToReal{g0)
tmp2 <- mulReal (id(3), tmpl)
tmp3 <- addReal (id(2), tmp2]
id(1) - tmp3

cede optimization

¥

tmpl <- mulReal (id(3), €0.0)
id(1) <- addReal (id(2), tmpl)

object code generation

¥
MOVF id3, RO
MULF #60.0, RO
ADDF id2, RO
MOVF RO, idl

References

* Compilateurs Principes, techniques et outils. Alfred
V.Aho, Ravi Sethi, Jetfrey D.Ullman. Pearson. Paris France.
2007.

@ Introduction to Compilers

	Diapositive 1 Chapter I. Introduction to Compilers (Objectives)
	Diapositive 2
	Diapositive 3
	Diapositive 4 Example of compilation
	Diapositive 5 Compiler vs Interpreter Compiler
	Diapositive 6
	Diapositive 7
	Diapositive 8
	Diapositive 9 What is expected of a compiler? (1)
	Diapositive 10
	Diapositive 11 Structure of a compiler
	Diapositive 12 Lexical analysis
	Diapositive 13 Example
	Diapositive 14
	Diapositive 15
	Diapositive 16 Syntax analysis (Parsing)
	Diapositive 17 Example
	Diapositive 18 Syntax tree (Parse tree)
	Diapositive 19 Semantic analysis
	Diapositive 20 Intermediate code generation
	Diapositive 21 Intermediate code optimization (1)
	Diapositive 22
	Diapositive 23
	Diapositive 24 Object code generation
	Diapositive 25
	Diapositive 26 References

