
1

COMPUTER ARCHITECTURE

2nd Year Computer science

Abdelhafid Boussouf University
2025-2026

Chapiter 3:

PROCESSOR
(The MIPS R3000 microprocessor)

1

MICROPROCESSORS

A program stored in the memory provides instructions to the CPU to perform a specific

action. This action can be a simple addition. It is function of the CPU to fetch the program

instructions from the memory and execute them.

 The CPU contains a number of registers to store information inside the CPU temporarily.

Registers inside the CPU can be 8-bit, 16-bit, 32-bit or even 64-bit depending on the

CPU.

 The CPU also contains Arithmetic and Logic Unit (ALU). The ALU performs arithmetic

(add, subtract, multiply, divide) and logic (AND, OR, NOT) functions.

 The CPU contains a program counter also known as the Instruction Pointer to

point the address of the next instruction to be executed.

 Instruction Decoder is a kind of dictionary which is used to interpret the meaning of the

instruction fetched into the CPU. Appropriate control signals are generated according to the

meaning of the instruction. 2

2

MICROPROCESSORS
Inside the CPU:

Flags

ALU

Instruction Pointer

Instruction Register

Instruction Decoder Timing

and control signals are

generated

Register B

Register A

Register D

Register C

Address Bus

Control Bus

Data Bus

Internal

Busses

Internal block diagram of a CPU

3

 Instruction set architecture (ISA) is the interface

between the hardware and the lowest-level software.

This is one of the most important abstractions.

4

Instruction Set Architecture (ISA)

3

 An ISA includes the following …

 Instructions and Instruction Formats

Data Types, Encodings, and Representations

 Programmable Storage: Registers and Memory

 Addressing Modes: to address Instructions and Data

Handling Exceptional Conditions (like overflow)

Instruction Set Architecture (ISA)

5

ISA Classification

Complex instruction set computer (CISC)

x86/x64 (Intel and AMD)

Reduced instruction set computer (RISC)

ARM, PowerPC, MIPS, RISC-V

Very long instruction word (VLIW)

 Itanium, Elbrus

6

Instruction Set Architecture (ISA)

4

Reduced Instruction Set Computing (RISC) concept was
proposed by teams of researchers at Stanford University
(John Hennessy) and University of California Berkeley (David
Paterson) in early 1980s as an alternative of Complex
Instruction Set Computing (CISC) dominating at that time.

7

Reduced Instruction Set Computing (RISC)

RISC ISAs dominate – most
mobile devices use ARM (RISC)

Modern CISC ISAs (x86/x64)
are RISC-like underneath

2017 Turing Award to
Patterson and Hennessy

RISC vs. CISC

8

5

 MIPS Microprocessor

 MIPS (Microprocessor without Interlocked
Pipelined Stages) is a family of reduced instruction
set computer (RISC) instruction set architectures
(ISA) ;  developed by MIPS Computer Systems,
now MIPS Technologies, based in the United
States.

9

Overview of the MIPS Architecture

10

6

Overview of the MIPS Architecture

Memory

Up to 232 bytes = 230 words

4 bytes per word

$0

$1

$2

$31

Hi Lo

ALU

F0
F1

F2

F31
FP

Arith

BadVaddr

Status

Cause

EPC

EIU FPU

TMU

Execution &

Integer Unit

(Main proc)

Floating

Point Unit

(Coproc 1)

Trap &

Memory Unit

(Coproc 0)

. . .

. . .

Integer
mul/div

Arithmetic &

Logic Unit

32 General

Purpose

Registers

Integer

Multiplier/Divider

32 Floating-Point

Registers

Floating-Point

Arithmetic Unit

11

MIPS General-Purpose Registers
 32 General Purpose Registers (GPRs)

 All registers are 32-bit wide in the MIPS 32-bit architecture

 Software defines names for registers to standardize their use

 Assembler can refer to registers by name or by number ($ notation)
Name Register Usage

$zero $0 Always 0 (forced by hardware)

$at $1 Reserved for assembler use

$v0 – $v1 $2 – $3 Result values of a function

$a0 – $a3 $4 – $7 Arguments of a function

$t0 – $t7 $8 – $15 Temporary Values

$s0 – $s7 $16 – $23 Saved registers (preserved across call)

$t8 – $t9 $24 – $25 More temporaries

$k0 – $k1 $26 – $27 Reserved for OS kernel

$gp $28 Global pointer (points to global data)

$sp $29 Stack pointer (points to top of stack)

$fp $30 Frame pointer (points to stack frame)

$ra $31 Return address (used by jal for function call)

12

7

Special-Purpose Registers

-PC (Program Counter), points to the next instruction to be executed

-Hi :High result of multiplication and division operations

-Lo :Low result of multiplication and division operations

-SR (status): Status Register, Contains the interrupt mask and enable bits

-CAUSE : specifies what kind of interrupt or exception just happened.

-EPC : Exception PC, Contains the address of the instruction when the

exception occurred.

-Vaddr: Bad Address Register, Contains the invalid memory address caused by

load, store, or fetch.

 13

Instruction Formats
 All instructions are 32-bit wide, Three instruction formats:

 Register (R-Type)

 Register-to-register instructions

Op: operation code specifies the format of the instruction

 Immediate (I-Type)

 16-bit immediate constant is part in the instruction

 Jump (J-Type)

 Used by jump instructions

Op6 Rs5 Rt5 Rd5 sa5 funct6

Op6 Rs5 Rt5 immediate16

Op6 immediate26
14

8

R-Type Instruction Format

 Op: operation code (opcode)

 Specifies the operation of the instruction

 Also specifies the format of the instruction

 funct: function code – extends the opcode

 Up to 26 = 64 functions can be defined for the same opcode

 MIPS uses opcode 0 to define many R-type instructions

 Three Register Operands (common to many instructions)

 Rs, Rt: first and second source operands

 Rd: destination operand

 shamt: the shift amount used by shift instructions

Op6 Rs5 Rt5 Rd5 shamt5 funct6

15

Encoding MIPS Instructions

Field Opcode

16

9

Encoding MIPS Instructions

Field func when OPCOD = SPECIAL

17

Encoding MIPS Instructions

Examples:

18

10

Encoding MIPS Instructions

Examples:

19

From Assembly to Machine Code
Let’s see an example of a R-format instruction, first as a combination of

decimal numbers and then of binary numbers. Consider the instruction:

add $t0, $s1, $s2

The op and funct fields in combination (0 and 32 in this case) tell that this

instruction performs addition (add).

The rs and rt fields, registers $s1 (17) and $s2 (18), are the source operands,

and the rd field, register $t0 (8), is the destination operand.

The shamt field is unused in this instruction, so it is set to 0.

20

11

From Assembly to Machine Code
Thus, the decimal representation of instruction add $t0, $s1, $s2 is:

• op = 000000 (special)

• rs = 17 ($s1)

• rt = 18 ($s2)

• rd = 8 ($t0)

• shamt = 0 (not used)

• funct = 100000(add)

The binary representation is:

21

Pseudo-Instructions
Most assembler instructions represent machine instructions one-to-one. The

assembler can also treat common variations of machine instructions as if they

were instructions in their own right. Such instructions are called pseudo-

instructions.

The hardware need not implement the pseudo-instructions, but their appearance

in assembly language simplifies programming. Register $at (assembler

temporary) is reserved for this purpose.

blt $s1, $s2, L 🡪 slt $at, $s1, $s2

li $s1, 20

🡪

bne $at, $zero, L

addiu $s1, $zero, 20

move $t0, $t1 🡪 addu $t0, $zero, $t1
22

12

Addressing Modes

MIPS addressing modes are:
1. Immediate addressing where the operand is a constant in the instruction

itself

2. Register addressing where the operand is a register

3. Base or displacement addressing where the operand is at the memory
location whose address is the sum of a register and a constant in the
instruction

4. PC-relative addressing where the branch address is the sum of the PC
with a constant in the instruction

5. Pseudo-direct addressing where the jump address is a constant in
the instruction concatenated with the upper bits of the PC

23

Addressing Modes

24

13

Addressing Modes

25

Addressing Modes

Immediate

addi $t0, $t1, 5

op rs rt Immediate

26

14

Addressing Modes

Register

add $t0, $t1, $t2

rs rt funct op rd

Register

27

Addressing Modes

Base (Arrays, structures, pointers)

lw $t1, 4($s2)
lw $t1, ($s2) #indirect addressing

rs rt Address op

Register

Memory

±

28

15

Addressing Modes

PC-relative (e.g., conditional branches, need an offset)

beqz $t0, goEnd

 Effective Address: adding a 16-bit address shifted left 2 bits to thePC

rs rt Address (offset) op

PC

Memory

±

29

Addressing Modes

Pseudodirect

Address op

PC

Memory

concat

 Effective Address: Concatenating a 26-bit address shifted left 2 bits with the
4 upper bits of the PC.

j for

30

16

Addressing Modes

Examples:

31

Byte-‐Addressable Memory

🞍 Each data byte has a unique address

🞍 Load/store words or single bytes: load byte (lb) and store byte
(sb)

🞍 Each 32-‐bit words has 4 bytes, so the word address increments
by 4. MIPS uses byte addressable memory

 Word Address Data

0000000C

00000008

00000004

00000000

4 0 F 3 0 7 8 8

0 1 E E 2 8 4 2

F 2 F 1 A C 0 7

A B C D E F 7 8

width = 4 bytes

Word 3

Word 2

Word 1

Word 0

32

17

Address Space

The MIPS address space is divided in four segments:

• Text, which contains the program code

• Data, which contains constants and global variables

• Heap, which contains memory dynamically allocated during runtime

• Stack, which contains temporary data for handling procedure calls

The heap and stack segments grow toward each other, thereby allowing the

efficient use of memory as the two segments expand and shrink.

33

Address Space

34

18

Example Program: Executable
Executable file header Text Size Data Size

0x34 (52 bytes) 0xC (12 bytes)

Text segment Address Instruction

0x00400000 0x23BDFFFC

0x00400004 0xAFBF0000

0x00400008 0x20040002

0x0040000C 0xAF848000

0x00400010 0x20050003

0x00400014 0xAF858004

0x00400018 0x0C10000B

0x0040001C 0xAF828008

0x00400020 0x8FBF0000

0x00400024 0x23BD0004

0x00400028 0x03E00008

0x0040002C 0x00851020

0x00400030 0x03E0008

Data segment Address Data

0x10000000

0x10000004

0x10000008

f g y

35

Example Program: In Memory

36

Reserved

Stack

Heap

y

g

f

0x03E00008

0x00851020

0x03E00008

0x23BD0004

0x8FBF0000

0xAF828008

0x0C10000B

0xAF858004

0x20050003

0xAF848000

0x20040002

0xAFBF0000

0x23BDFFFC

Reserved

$sp = 0x7FFFFFFC 0x7FFFFFFC

0x10010000

0x00400000

$gp = 0x10008000

PC = 0x00400000

0x10000000

19

Fetch instruction

Compute address of next instruction

Generate control signals for instruction

Read operands from registers

Compute result value

Writeback result in a register

Fetch - Execute Cycle

Instruction Decode

Instruction Fetch

Execute

Writeback Result

In
fi

n
it

e
 C

y
c

le
 i

m
p

le
m

e
n

te
d

 i
n

 H
a

rd
w

a
re

Memory Access Read or write memory

37

MIPS Subset of Instructions
 ALU instructions (R-type): add, sub, and, or, xor, slt

 Immediate instructions (I-type): addi, slti, andi, ori, xori

 Load and Store (I-type): lw, sw

 Branch (I-type): beq, bne

 Jump (J-type): j

 This subset does not include all the integer instructions

 But sufficient to illustrate design of datapath and control

 Concepts used to implement the MIPS subset are used to construct a broad

spectrum of computers
38

20

Details of the MIPS Subset
Instruction Meaning Format

add rd, rs, rt addition op6 = 0 rs5 rt5 rd5 0 0x20

sub rd, rs, rt subtraction op6 = 0 rs5 rt5 rd5 0 0x22

and rd, rs, rt bitwise and op6 = 0 rs5 rt5 rd5 0 0x24

or rd, rs, rt bitwise or op6 = 0 rs5 rt5 rd5 0 0x25

xor rd, rs, rt exclusive or op6 = 0 rs5 rt5 rd5 0 0x26

slt rd, rs, rt set on less than op6 = 0 rs5 rt5 rd5 0 0x2a

addi rt, rs, imm16 add immediate 0x08 rs5 rt5 imm16

slti rt, rs, imm16 slt immediate 0x0a rs5 rt5 imm16

andi rt, rs, imm16 and immediate 0x0c rs5 rt5 imm16

ori rt, rs, imm16 or immediate 0x0d rs5 rt5 imm16

xori rt, imm16 xor immediate 0x0e rs5 rt5 imm16

lw rt, imm16(rs) load word 0x23 rs5 rt5 imm16

sw rt, imm16(rs) store word 0x2b rs5 rt5 imm16

beq rs, rt, offset16 branch if equal 0x04 rs5 rt5 offset16

bne rs, rt, offset16 branch not equal 0x05 rs5 rt5 offset16

j address26 jump 0x02 address26

Register Transfer Level (RTL)

 RTL is a description of data flow between registers

 RTL gives a meaning to the instructions

 All instructions are fetched from memory at address PC

Instruction RTL Description
 ADD Reg(rd) ← Reg(rs) + Reg(rt); PC ← PC + 4

 SUB Reg(rd) ← Reg(rs) – Reg(rt); PC ← PC + 4

 ORI Reg(rt) ← Reg(rs) | zero_ext(imm16); PC ← PC + 4

 LW Reg(rt) ← MEM[Reg(rs) + sign_ext(imm16)]; PC ← PC + 4

 SW MEM[Reg(rs) + sign_ext(imm16)+ ← Reg(rt); PC ← PC + 4

 BEQ if (Reg(rs) == Reg(rt))
 PC ← PC + 4 + 4 × sign_ext(offset16)
 else PC ← PC + 4

40

21

Instruction Fetch/Execute
 R-type Fetch instruction: Instruction ← MEM*PC+

 Fetch operands: data1 ← Reg(rs), data2 ← Reg(rt)

 Execute operation: ALU_result ← func(data1, data2)

 Write ALU result: Reg(rd) ← ALU_result

 Next PC address: PC ← PC + 4

 I-type Fetch instruction: Instruction ← MEM*PC+

 Fetch operands: data1 ← Reg(rs), data2 ← Extend(imm16)

 Execute operation: ALU_result ← op(data1, data2)

 Write ALU result: Reg(rt) ← ALU_result

 Next PC address: PC ← PC + 4

 BEQ Fetch instruction: Instruction ← MEM*PC+

 Fetch operands: data1 ← Reg(rs), data2 ← Reg(rt)

 Equality: zero ← subtract(data1, data2)

 Branch: if (zero) PC ← PC + 4 + 4×sign_ext(offset16)

 else PC ← PC + 4
41

Instruction Fetch/Execute
 LW Fetch instruction: Instruction ← MEM*PC+

 Fetch base register: base ← Reg(rs)

 Calculate address: address ← base + sign_extend(imm16)

 Read memory: data ← MEM*address+

 Write register Rt: Reg(rt) ← data

 Next PC address: PC ← PC + 4

 SW Fetch instruction: Instruction ← MEM*PC+

 Fetch registers: base ← Reg(rs), data ← Reg(rt)

 Calculate address: address ← base + sign_extend(imm16)

 Write memory: MEM*address+ ← data

 Next PC address: PC ← PC + 4

 Jump Fetch instruction: Instruction ← MEM*PC+

 Target PC address: target ← PC*31:28+ || address26 || ‘00’

 Jump: PC ← target

42

22

Requirements of the Instruction Set
Memory
 Instruction memory where instructions are stored
Data memory where data is stored

Registers
31 × 32-bit general purpose registers, R0 is always zero
Read source register Rs
Read source register Rt
Write destination register Rt or Rd

Program counter PC register and Adder to increment PC
Sign and Zero extender for immediate constant
ALU for executing instructions

43

Pipelining

44

23

Pipelining: Basic Idea

More systematically:

 Pipeline the execution of multiple instructions

 Analogy: “Assembly line processing” of instructions

 Idea:

 Divide the instruction processing cycle into distinct “stages” of processing

 Ensure there are enough hardware resources to process one instruction in each stage

 Process a different instruction in each stage
 Instructions consecutive in program order are processed in consecutive stages

 Benefit: Increases instruction processing throughput (1/CPI)

45

Example: Execution of Four Independent ADDs

Multi-cycle: 4 cycles per instruction

Pipelined: 4 cycles per 4 instructions

Time

F D E W

F D E W

F D E W

F D E W

F D E W

F D E W

F D E W

F D E W

Time

1 instruction completed per cycle

46

24

The Laundry Analogy

 “place one dirty load of clothes in the washer”

 “when the washer is finished, place the wet load in the dryer”

 “when the dryer is finished, take out the dry load and fold”

 “when folding is finished, ask your roommate (??) to put the clothes away”

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task

order

Task

order

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

47

Pipelining Multiple Loads of Laundry

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task

order

Task

order

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task

order

Task

order

- latency per load is the same

- throughput increased by 4

- 4 loads of laundry in parallel

- no additional resources

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

48

25

Remember: The Instruction Processing Cycle

49

Pipelining and ISA Design

MIPS ISA designed for pipelining

 All instructions are 32-bits

 Easier to fetch in one cycle

 Few and regular instruction formats

 Can decode and read registers in one step

 Load/store addressing

 Can calculate address in 3rd stage, access memory in 4th stage

 Alignment of memory operands

 Memory access takes only one cycle
50

26

Remember: The Instruction Processing Cycle

51

Pipelining Abstraction

Time (cycles)

lw $s2, 40($0) F R 40

$0

RF
$s2

+ DM

F R $t2

$t1

RF
$s3

+ DM

F R $s5

$s1

RF
$s4

- DM

F R $t6

$t5

RF
$s5

& DM

F R 20

$s1

RF
$s6

+ DM

F R $t4

$t3

RF
$s7

| DM

add $s3, $t1, $t2

sub $s4, $s1, $s5

and $s5, $t5, $t6

sw $s6, 20($s1)

or $s7, $t3, $t4

1 2 3 4 5 6 7 8 9 10

add

IM

IM

IM

IM

IM

IM
lw

sub

and

sw

or

52

27

Illustrating Pipeline Operation: Operation View

MEM

EX

ID

IF Inst4

WB

IF

MEM

IF

MEM

EX

t0 t1 t2 t3 t4 t5

ID

EX IF ID

IF ID

Inst0 ID

IF Inst1

EX

ID

IF Inst2

MEM

EX

ID

IF Inst3

WB

WB MEM

EX

WB

steady state

(full pipeline)

53

Illustrating Pipeline Operation: Resource View

I0

I0

I1

I0

I1

I2

I0

I1

I2

I3

I0

I1

I2

I3

I4

I1

I2

I3

I4

I5

I2

I3

I4

I5

I6

I3

I4

I5

I6

I7

I4

I5

I6

I7

I8

I5

I6

I7

I8

I9

I6

I7

I8

I9

I10

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

IF

ID

EX

MEM

WB

54

28

Instruction Pipeline: Not An Ideal Pipeline

Identical operations ... NOT!

  different instructions  not all need the same stages
 Forcing different instructions to go through the same pipe stages
 external fragmentation (some pipe stages idle for some instructions)

Uniform suboperations ... NOT!

  different pipeline stages  not the same latency
 Need to force each stage to be controlled by the same clock

 internal fragmentation (some pipe stages are too fast but all take the same clock cycle time)

Independent operations ... NOT!

  instructions are not independent of each other
 Need to detect and resolve inter-instruction dependences to ensure the pipeline provides
correct results
 pipeline stalls (pipeline is not always moving)

55

Pipelining Hazards

56

29

Structural hazard

Caused by limitations in hardware that don’t allow
concurrent execution of different instructions

Examples
Bus
Single ALU
Single Memory for instructions and data
Single IR

Remedy is to add additional elements to datapath to
eliminate hazard

57

Data Hazards Types

r3  r1 op r2 Read-after-Write
r5  r3 op r4 (RAW)

r3  r1 op r2 Write-after-Read
r1  r4 op r5 (WAR)

r3  r1 op r2 Write-after-Write
r5  r3 op r4 (WAW)
r3  r6 op r7

 An instruction depends on completion of data access by a

previous instruction

58

30

Control Hazard

Special case of data dependence: dependence on PC

beq:
branch is not determined until the fourth stage of the pipeline
 Instructions after the branch are fetched before branch is

resolved
 Always predict that the next sequential instruction is fetched
 Called “Always not taken” prediction

These instructions must be flushed if the branch is taken

Branch misprediction penalty
number of instructions flushed when branch is taken
May be reduced by determining branch earlier

59

Control Hazard

Time (cycles)

beq $t1, $t2, 40 RF $t2

$t1

RF- DM

RF $s1

$s0

RF& DM

RF $s0

$s4

RF| DM

RF $s5

$s0

RF- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM
lw

or

sub

20

24

28

2C

30

...

...

9

Flush

these

instructions

64 slt $t3, $s2, $s3 RF $s3

$s2

RF
$t3s

l
t DMIM

slt

60

31

Causes of Pipeline Stalls
Stall: A condition when the pipeline stops moving

Resource contention

Dependencies (between instructions)
Data hazard
Control hazard

Long-latency (multi-cycle) operations

 61

How Can You Handle Data Hazards?

■ Insert “NOP”s (No OPeration) in code at compile time

■ Rearrange code at compile time

■ Forward data at run time

■ Stall the processor at run time

62

32

Data Forwarding/Bypassing
Problem: A consumer (dependent) instruction has to wait in decode

stage until the producer instruction writes its value in the register file

Goal: We do not want to stall the pipeline unnecessarily

Observation: The data value needed by the consumer instruction can
be supplied directly from a later stage in the pipeline (instead of only
from the register file)

 Idea: Add additional dependence check logic and data forwarding
paths (buses) to supply the producer’s value to the consumer right
after the value is available

Benefit: Consumer can move in the pipeline until the point the value
can be supplied  less stalling

63

 Use result when it is computed

 Don’t wait for it to be stored in a register

 Requires extra connections in the datapath

No bubble!

4-3=1, no stall!

Data Forwarding/Bypassing

64

33

 Can’t always avoid stalls by forwarding

 If value not computed when needed

 Can’t forward backward in time!

Data Forwarding/Bypassing

65

Code Scheduling to Avoid Stalls

 Reorder code to avoid use of load result in the next

instruction

 C code for A = B + E; C = B + F;

lw $t1,

lw $t2,

add $t3,

sw $t3,

lw $t4,

add $t5,

sw $t5,

0($t0)

4($t0)

$t1, $t2

12($t0)

8($t0)

$t1, $t4

16($t0)

stall

stall

lw $t1,

lw $t2,

lw $t4,

add $t3,

sw $t3,

add $t5,

sw $t5,

0($t0)

4($t0)

8($t0)

$t1, $t2

12($t0)

$t1, $t4

16($t0)

11 cycles 13 cycles

66

34

Stall on Branch

 In MIPS pipeline

 Need to compare registers and compute target earlier in the pipeline

 Add extra hardware to do it in ID stage (earliest ?)

 Wait until branch outcome determined before fetching next

instruction

 1 bubble when determine in ID

 Is no stall possible? IF, prediction

67

