COMPUTER ARCHITECTURE

2" Year Computer science

Chapiter 3:

T PROCESSOR
. (The MIPS R3000 microprocessor)

Abdelhafid Boussouf University
2025-2026

MICROPROCESSORS

A program stored in the memory provides instructions to the CPU to perform a specific

action. This action can be a simple addition. It is function of the CPU to fetch the program
instructions from the memory and execute them.

= The CPU contains a number of registers to store information inside the CPU temporarily.

Registers inside the CPU can be 8-bit, 16-bit, 32-bit or even 64-bit depending on the
CPU.

The CPU also contains Arithmetic and Logic Unit (ALU). The ALU performs arithmetic
(add, subtract, multiply, divide) and logic (AND, OR, NOT) functions.

The CPU contains a program counter also known as the Instruction Pointer to

point the address of the next instruction to be executed.

Instruction Decoder is a kind of dictionary which is used to interpret the meaning of the
instruction fetched into the CPU. Appropriate control signals are generated according to the
meaning of the instruction. é




MICROPROCESSORS

Inside the CPU:

Address Bus

Instruction Pointer

[ Instruction Register

Instruction Decoder Timing Control Bus
Fla;;s — ALU and control signals are

generated

’ Data Bus

Internal
Busses

Register A
Register B
Register C
Register D

Internal block diagram of a CPU

Instruction Set Architecture (ISA)

Instruction set architecture (ISA) is the interface
between the hardware and the lowest-level software.
This is one of the most important abstractions.




Instruction Set Architecture (ISA)

+* An ISA includes the following ...
<> Instructions and Instruction Formats
<> Data Types, Encodings, and Representations
<> Programmable Storage: Registers and Memory
<> Addressing Modes: to address Instructions and Data

<> Handling Exceptional Conditions (like overflow)

Instruction Set Architecture (ISA)

ISA Classification

= Complex instruction set computer (CISC)
x86/x64 (Intel and AMD)

=Reduced instruction set computer (RISC)
ARM, PowerPC, MIPS, RISC-V

=Very long instruction word (VLIW)

Itanium, Elbrus




Reduced Instruction Set Computing (RISC)

Reduced Instruction Set Computing (RISC) concept was
proposed by teams of researchers at Stanford University
(John Hennessy) and University of California Berkeley (David
Paterson) in early 1980s as an alternative of Complex
Instruction Set Computing (CISC) dominating at that time.

ACM A.M. Turing Award "RISC ISAs dominate — most
e P mobile devices use ARM (RISC)

=Modern CISC ISAs (x86/x64)
are RISC-like underneath

i _ e #2017 Turing Award to
ok L LGOI Patterson and Hennessy o

University of California, Berkeley

RISC vs. CISC

CisC RISC

Emphasis on hardware Emphasis on software

Multiple instruction sizes and formats |Instructions of same set with few

formats
Less registers Uses more registers
More addressing modes Fewer addressing modes

Extensive use of microprogramming |Complexity in compiler

Instructions take a varying amount of |Instructions take one cycle time
cycle time
Pipelining is difficult Pipelining is easy




MIPS Microprocessor

MIPS (Microprocessor without Interlocked
Pipelined Stages) is a family of reduced instruction
set computer (RISC) instruction set architectures
(ISA); developed by MIPS Computer Systems,
now MIPS Technologies, based in the United
States.

Overview of the MIPS Architecture

[ 1
CPU Coprocessor 1 (FPLU)

Ragisters Registers
50 %0

’_ ”1 —‘ 531
Arithmetic

Coprocessor O (braps and memory)
Registars

BadWAddr Cause
Status EPC




Overview of the MIPS Architecture

4 bytes per word Memory
Up to 232 bytes = 230 words
EIU $0 Execution & FPU E0 Floating
32 General $1 Integer Unit F1 Point Unit
Purpose T %2 (Main proc) F2 (Coproc 1) 32 Floating-Point
Registers | Registers
. . $31 ] F31
Arithmetic & __| | Integer FP | 4
Logic Unit AU ~ mulldiv Arith [ o
9 ‘ _|___ Floating-Point
Arithmetic Unit
TMU  |BadVaddr Trap &
| Status Memory Unit
- Cause
Integer — (Coproc 0)
Multiplier/Divider

MIPS General-Purpose Registers

+ 32 General Purpose Registers (GPRSs)
< All registers are 32-bit wide in the MIPS 32-bit architecture
< Software defines names for registers to standardize their use

< Assembler can refer to registers by name or by number ($ notation)

Name ‘ Register ‘ Usage
$zero $0 Always 0 (forced by hardware)
$at $1 Reserved for assembler use
$ve - $vi $2 - $3 Result values of a function
$a@ - $a3 $4 - 97 Arguments of a function
$to - $t7 $8 - $15 Temporary Values
$s@0 - $s7 $16 - $23 Saved registers (preserved across call)
$t8 - $to $24 - $25 More temporaries
$ko - $k1 $26 - $27 Reserved for OS kernel
$gp $28 Global pointer (points to global data)
$sp $29 Stack pointer (points to top of stack)
$fp $30 Frame pointer (points to stack frame) a
$ra $31 Return address (used by jal for function call)




Special-Purpose Registers

-PC (Program Counter), points to the next instruction to be executed

-Hi :High result of multiplication and division operations

-Lo :Low result of multiplication and division operations

-SR (status): Status Register, Contains the interrupt mask and enable bits

-CAUSE : specifies what kind of interrupt or exception just happened.

-EPC : Exception PC, Contains the address of the instruction when the

exception occurred.

-Vaddr: Bad Address Register, Contains the invalid memory address caused by

load, store, or fetch.

Instruction Formats

«» All instructions are 32-bit wide, Three instruction formats:

“ Register (R-Type)

< Register-to-register instructions

<> Op: operation code specifies the format of the instruction

Op¢® Rs®

Rt®

Rd5

sa°

functé

< Immediate (I-Type)

< 16-bit immediate constant is part in the instruction

Op¢® Rs®

Rt®

immediate?6

s Jump (J-Type)

< Used by jump instructions

| opp |

immediate2®




R-Type Instruction Format

Op¢ Rs5 Rt® Rd> shamt® funct®

< Op: operation code (opcode)
< Specifies the operation of the instruction
< Also specifies the format of the instruction
+« funct: function code — extends the opcode
< Up to 26 = 64 functions can be defined for the same opcode
<~ MIPS uses opcode 0 to define many R-type instructions
« Three Register Operands (common to many instructions)
< Rs, Rt: first and second source operands
<> Rd: destination operand

<~ shamt: the shift amount used by shift instructions

Encoding MIPS Instructions

Field Opcode

000 001 D10 o1 100 101 110 111
000| SPECIAL [BCOND  [J ML BEQ |[BME |[BLEZ |[BGTZ
001|ADDI  |ADDIU STl [SLTIU [ANDI ORI XOR (LUl
010| COPRO
ot
100 LB LH LW LBU  [LHU
101| S8 H SW
110
il




Encoding MIPS Instructions

Field func when OPCOD = SPECIAL

0o 00 010 011 100 11 110 m
oo &L SRL SRA a SALW SRAN
001 | JR JALR SYSCALL | BREAK

10| MFHI MTHI MFLO MTLO

011 | MULT MULTL | DIV D

100 [ ADD ADDU SUB SUsy AMD CR XOR NOR
1M aT ST

110

m

Encoding MIPS Instructions

Examples:

Text Segment :

Bkpt | Address Code Basic Source
[] | oxoo4o0000| 0%3c011001|lui £1,4097 4: 1w $tl, x

[] | oxooso0004| oxec2g0000(1w £9,0(51)
L] | oxnodoooos| ox20010001)addi £1,50,1 5: subi 5t2,%tl,1
[] | oxoodooooc| ox01215022|sub £10, 49, 51
L
|

0x00400010| 0x3c011001|1ui £1,4087 6: aw 5t2, X
0x00400014| Oxac2a0000|sw £10,0(%1)




Encoding MIPS Instructions

Examples:
TextSeqmen
Bipt | Address Code Basic Source
D 0x00400000) 0x3c010002{1ui 81,1 4: lui 81,1
D 0x00400004) 0x24090005(addin &9, 40,3 3o 1igtl,s
Text Segment
Bkpt | Address Code | Basic Source
[] | oxoo4o0000) 0x24090005[addiu 59,50,5 4: 1i 5tl,5
[] [ oxoo400004] 0x240a0006]addiu 510,350,6 S: 1i 5t2,6
[] | oxooso0008] 0x012a5820/add $11,%9,510 6: add st3,stl,st2

From Assembly to Machine Code

Let’s see an example of a R-format instruction, first as a combination of
decimal numbers and then of binary numbers. Consider the instruction:

add sto, $s1, $s2

The op and funct fields in combination (0 and 32 in this case) tell that this
instruction performs addition (add).

The rs and rt fields, registers $s1(17) and $s2 (18), are the source operands,
and the rd field, register $to (8), is the destination operand.

The shamt field is unused in this instruction, so it is set to o.

10



From Assembly to Machine Code

Thus, the decimal representation of instruction add sto, $s1, $s2 is:
® 0op=000000 (special)
® rs=17(%s1)
* rt=18(%s2)
* rd=38(sto)
® shamt = o0 (not used)
* funct=100000(add)

The binary representation is:

| oooooo | 10001 10010 01000 00000 100000 |
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

[ 21
Pseudo-Instructions

Most assembler instructions represent machine instructions one-to-one. The
assembler can also treat common variations of machine instructions as if they
were instructions in their own right. Such instructions are called pseudo-
instructions.

The hardware need not implement the pseudo-instructions, but their appearance
in assembly language simplifies programming. Register $at (assembler
temporary) is reserved for this purpose.

blt $s1, $s2, L 0 slt $at, $s1, $s2

bne sat, $zero, L
li $s1, 20 O addiu $s1, $zero, 20
move $to, st1 0 addu sto, $zero, st1

11



Addressing Modes

= MIPS addressing modes are:

1. Immediate addressing where the operand is a constant in the instruction
itself

2. Register addressing where the operand is a register

3. Base or displacement addressing where the operand is at the memory
location whose address is the sum of a register and a constant in the
instruction

4. PC-relative addressing where the branch address is the sum of the PC
with a constant in the instruction

5. Pseudo-direct addressing where the jump address is a constant in
the instruction concatenated with the upper bits of the PC e

Addressing Modes

1. Immediate addressing

|op| rs | rt | Immediate |

2. Register addressing

| op | rs | rt | rd | |func:t| Registers

I Register

3. Base addressing

| op | rs | rt | Address | Memory

Register | @— [Byte] Halfword Word
[

12



Addressing Modes

4. PC-relative addressing

[op[rs [ rt [ Address | Memory
| PIC | Word
5. Pseudodirect addressing

[ op | Address | Memory
| I PC

I @— Word

Addressing Modes

Immediate

op | rs | rt

Immediate

addi St0, St1, 5

13



Register

Addressing Modes

op | rs

rt

rd

funct

add StO0, St1, St2

Register

Addressing Modes

Base (Arrays, structures, pointers)

op | rs

rt

Address

lw St1, 4(Ss2)

lw St1, (Ss2) #indirect addressing

*

Register

[Memory

1

14



Addressing Modes

PC-relative (e.g., conditional branches, need an offset)

op | rs | rt Address (offset)

beqgz St0, goEnd

+— | PC

Memory

= Effective Address: adding a 16-bit address shifted left 2 bits to thePC @

Addressing Modes

Pseudodirect

op Address

concat +— PC

j for
Memory

Effective Address: Concatenating a 26-bit address shifted left 2 bits with the
4 upper bits of the PC. @

15



Addressing Modes

Examples:

Address Code Basic Source
0x00400000) Ox3c011001/1ui §1,4087 59 la 4t0, vars
0x00400004) 0x34280000/0xi $6,51,0
0x00400008) OxBA0S0000\1w §9,0(58) a: lw §t1, 0i5t0)
0x0040000c| DxBd0a0004|1w 510,4(58) 7: 1w §t2, 4i5t0)

0x00400010] Ox01Za082a/slt §1,%9,510

[ma)

: saut: bge §tl, §tI, exit

0:x00400014] 0x10200005[beq $1,50,3

000400015 0x00052Z0Z1 addu 54,850,859 =l move §al, §tl
0x0040001c| 0x24020001\addiu $2,50,1 10: 1i §v0, 1
000400020 0x0000000c|syscall 11: syscall
000400024 0xZ1250001|addi §9,55,1 12: addi §tl, stl, 1
0x00400028| Dx08100004(7 Ox00400010 13: j saut
0x0040002c| 0x2402000a/addiu $2,50,10 14: exit: 1i §w0, 10
0x00400030) 0x0000000c| syscall 15: gyscall

Byte--Addressable Memory

1 Each data byte has a unique address

Load/store words or single bytes: load byte (Ib) and store byte

(sb)

Each 32--bit words has 4 bytes, so the word address increments
by 4. MIPS uses byte addressable memory

Word Address Data
0000000C 4 0| F3|0 7|8 8| Word3
00000008 0 1/EE |2 8|4 2| Word2
00000004 F2 |F1|A C|0 7| Wordl
00000000 AB |CD|E F|7 8| Word0
B e ——
width = 4 bytes

16



Address Space

The MIPS address space is divided in four segments:
® Text, which contains the program code
® Data, which contains constants and global variables
® Heap, which contains memory dynamically allocated during runtime

® Stack, which contains temporary data for handling procedure calls

The heap and stack segments grow toward each other, thereby allowing the
efficient use of memory as the two segments expand and shrink.

©
Address Space

Address Segment
OxFFFFFFFC
Reserved
0x80000000
Ox7FFFFFFC Stack

Dynamic Data
O0x10010000 Heap
Ox1000FFFC

Static Data

0x10000000
OXOFFFFFFC

Text

0x00400000
Ox003FFFFC

Reserved

0x00000000

17



Example Program: Executable

Executable file header Text Size Data Size
0x34 (52 bytes) 0xC (12 bytes)
Text segment Address Instruction
0x00400000 0x23BDFFFC
0x00400004 OXAFBF0000
0x00400008 0x20040002
0x0040000C OXAF848000
0x00400010 0x20050003
0x00400014 OXAF858004
0x00400018 0x0C10000B
0x0040001C OXAF828008
0x00400020 0x8FBF0000
0x00400024 0x23BD0004 +
0x00400028 0x03E00008
0x0040002C 0x00851020
0x00400030 0x03E0008
Data segment Address Data
0x10000000 fgy
0x10000004
0x10000008

Example Program: In Memory

Reserved
OXTFFFFFFC Stack <— $sp = OX7FFFFFFC

4

Heap

<— $gp = 0x10008000

0x10000000 f

0x03E00008 +

0x238D0004
(0x8FBF0000
OXAF828008
0x0C100008
OXAF858004
0x20050003

(OxAF848000
0x20040002

OXAFBF0000

0x00400000 O0x23BDFFFC <— PC = 0x00400000

Reserved

18



Fetch - Execute Cycle
!

Fetch instruction
Compute address of next instruction

Instruction Fetch

l

Instruction Decode

l

Generate control signals for instruction
Read operands from registers

Execute Compute result value
Memory Access Read or write memory
Writeback Result Writeback result in a register

Infinite Cycle implemented in Hardware

MIPS Subset of Instructions

ALU instructions (R-type): add, sub, and, or, xor, slt

Immediate instructions (I-type): addi, slti, andi, ori, xori
Load and Store (I-type): lw, sw
Branch (I-type): beq, bne
Jump (J-type): j
= This subset does not include all the integer instructions

= But sufficient to illustrate design of datapath and control

= Concepts used to implement the MIPS subset are used to construct a broad
spectrum of computers

19



Details of the MIPS Subset

Instruction \ Meaning Format

add rd,rs, rt addition opé=0 rss rts rds 0 0x20
sub rd,rs, 1t subtraction opé=0 rss rts rd° 0 0x22
and rd,rs,rt bitwise and opé=0 rs° rtd rd> 0 0x24
or rd,rs,rt bitwise or opé=0 rs® rtd rd® 0 0x25
xor rd,rs,rt exclusive or opé=0 rss rts rd° 0 0x26
slt  rd,rs, rt set on less than opé=0 rs° rtd rd> 0 0x2a
addi rt, rs, imm16 add immediate 0x08 rss rts imm?16

slti  rt, rs, imm?16 slt immediate 0x0a rss rts imm?16

andi rt, rs, imm?16 and immediate 0x0c rss rts imm?16

ori rt, rs, immi6 or immediate 0x0d rss rts imm?16

xori rt, imm?26 xor immediate 0x0e rsd rts imm?16

Iw  rt, imm28(rs) load word 0x23 rs® rtd imm?16

sw rt, imm28(rs) store word 0x2b rs® rtd imm?16

beq rs, rt, offset!® branch if equal 0x04 rsd rts offset6

bne rs, it, offsetl® branch not equal 0x05 rss rts offset!6

j address?® jump 0x02 address?®

Register Transfer Level (RTL)

= RTL is a description of data flow between registers

= RTL gives a meaning to the instructions

= All instructions are fetched from memory at address PC

Instruction

ADD
SuB
ORI
LW
SW
BEQ

RTL Description

Reg(rd) & Reg(rs) + Reg(rt);
Reg(rd) & Reg(rs)— Reg(rt);

Reg(rt) & Reg(rs) | zero_ext(imm?®);

Reg(rt) & MEM[Reg(rs) + sign_ext(imm?®)];

MEM{[Reg(rs) + sign_ext(imm?®)] & Reg(rt);

if (Reg(rs) == Reg(rt))

PC & PC+ 4 + 4 x sign_ext(offset?)

else PC<«PC+4

PC<PC+4
PC&PC+4
PC& PC+4
PC & PC+4
PC & PC+4

20



R-type

I-type

BEQ

Instruction Fetch/Execute

Instruction < MEM[PC]

Fetch instruction:

Fetch operands:

Execute operation:
Write ALU result:
Next PC address:

Fetch instruction:

Fetch operands:

Execute operation:
Write ALU result:
Next PC address:

Fetch instruction:

Fetch operands:

Equality:

Branch:

datal & Reg(rs), data2 ¢ Reg(rt)
ALU_result ¢ func(datal, data2)
Reg(rd) ¢ ALU_result

PC & PC+4

Instruction < MEM[PC]

datal < Reg(rs), data2 < Extend(imm?)
ALU_result < op(datal, data2)

Reg(rt) < ALU_result

PC&< PC+4

Instruction ¢ MEM[PC]

datal & Reg(rs), data2 ¢ Reg(rt)

zero € subtract(datal, data2)

if (zero) PC & PC+ 4 + 4xsign_ext(offset'®)
else PC&< PC+4

LW

SwW

Jump

Instruction Fetch/Execute

Fetch instruction:
Fetch base register:
Calculate address:
Read memory:
Write register Rt:
Next PC address:

Fetch instruction:
Fetch registers:
Calculate address:
Write memory:
Next PC address:

Fetch instruction:
Target PC address:
Jump:

Instruction ¢ MEMI[PC]

base & Reg(rs)

address & base + sign_extend(imm?16)
data ¢ MEM[address]

Reg(rt) < data

PC<&< PC+4

Instruction ¢ MEMI[PC]

base & Reg(rs), data & Reg(rt)
address & base + sign_extend(imm?16)
MEM[address] ¢ data

PC&< PC+4

Instruction ¢ MEMI[PC]
target & PC[31:28] | | address?® || ‘00’
PC & target

21



Requirements of the Instruction Set

= Memory
Instruction memory where instructions are stored
Data memory where data is stored
= Registers
31 x 32-bit general purpose registers, RO is always zero
Read source register Rs
Read source register Rt
Write destination register Rt or Rd
= Program counter PC register and Adder to increment PC
=Sign and Zero extender for immediate constant

= ALU for executing instructions

Pipelining

44

22



Pipelining: Basic Idea

= More systematically:
Pipeline the execution of multiple instructions
Analogy: “Assembly line processing” of instructions

= |dea:

Divide the instruction processing cycle into distinct “stages” of processing
Ensure there are enough hardware resources to process one instruction in each stage
Process a different instruction in each stage

= |nstructions consecutive in program order are processed in consecutive stages

= Benefit: Increases instruction processing throughput (1/CPI)

Example: Execution of Four Independent ADDs

= Multi-cycle: 4 cycles per instruction

F o [e |w

F |p |[E |w

F o [E |w

Flo [e [w |

Time
=Pipelined: 4 cycles per 4 instructions
’ = 5 E W 1 instruction completed per cycle
F E |W
F D |[E |W
F D |E |W
Time

23



The Laundry Analogy

= “place one dirty load of clothes in the washer”
= “when the washer is finished, place the wet load in the dryer”
= “when the dryer is finished, take out the dry load and fold”

= “when folding is finished, ask your roommate (??) to put the clothes away”

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Pipelining Multiple Loads of Laundry

2 AM

- 4 loads of laundry in parallel
- no additional resources

- throughput increased by 4

- latency per load is the same

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

24



Remember: The Instruction Processing Cycle

J Executing a MIPS instruction can take up to five steps.
Step Name Description
Instruction Fetch |IF Read an instruction from memory.
Instruction ID  [Read source registers and generate control
Decode signals.
Execute EX |Compute an R-type result or a branch outcome.
Memory MEM |Read or write the data memory.
Writeback WB [ Store a result in the destination register.

Pipelining and ISA Design

MIPS ISA designed for pipelining

All instructions are 32-bits

Easier to fetch in one cycle

Few and regular instruction formats

Can decode and read registers in one step

Load/store addressing

Can calculate address in 31 stage, access memory in 4th stage

Alignment of memory operands

Memory access takes only one cycle

25



Remember: The Instruction Processing Cycle

However, as we saw, not all instructions need all five steps.

Instruction Steps required

beq IF ID EX

R-type F ID EX WB
sw IF ID EX MEM

Iw IF ID EX MEM WB

1w  $s2, 40(s0)

add $s3, $tl, $t2

sub $s4, $sl, $s5

and $s5, $t5, St6

sw $s6, 20(Ssl)

or $s7, $t3, $t4

26



lllustrating Pipeline Operation: Operation View

to t t, t; ty ts "

Inst,
Inst,
Inst,
Inst,
Inst,

[IF |[1D [[EX [IMEM [[wB |
[IF [[ID || EX |[MEM [[wB |
[IF ||1D || EX [[MEM [[wB |
[IF || 1D || EX [[MEM |[[wB =
[IF [[ID || EX [| MEM <
LIF D J[EX <
[IF I

steady state
(full pipeline)

i

lllustrating Pipeline Operation: Resource View

MEM

WB

27



Instruction Pipeline: Not An Ideal Pipeline

HMIdentical operations... NOT!

= different instructions = not all need the same stages

Forcing different instructions to go through the same pipe stages
- external fragmentation (some pipe stages idle for some instructions)

BUniform suboperations ... NOT!
= different pipeline stages = not the same latency

Need to force each stage to be controlled by the same clock

- internal fragmentation (some pipe stages are too fast but all take the same clock cycle time)

HIndependent operations ... NOT!

—> instructions are not independent of each other
Need to detect and resolve inter-instruction dependences to ensure the pipeline provides

correct results

- pipeline stalls (pipeline is not always moving)

Pipelining Hazards

There are situations in pipelining when the next
instruction can not execute in the following clock cycle.
These events are called hazards

In other word, any condition that causes a pipeline to
stall is called a hazard.

There are three types of hazards:

« Structural hazards:

A required resource is busy
« Data hazards:

Need to wait for previous instruction to complete its data read/write
= Control hazards:

Deciding on control action depends on previous instruction

28



Structural hazard

= Caused by limitations in hardware that don’t allow
concurrent execution of different instructions

=Examples
Bus
Single ALU
Single Memory for instructions and data
Single IR
="Remedy is to add additional elements to datapath to
eliminate hazard

=7
Data Hazards Types

= An instruction depends on completion of data access by a
previous instruction

3 — & opm, Read-after-Write
re <—ryopr, (RAW)
rs <-r,opr, Write-after-Read
r < I, 0p rg (WAR)

rs <~ r,opr, Write-after-Write
M —ryopr, (WAW)
rs < rgeopry,

29



Control Hazard

= Special case of data dependence: dependence on PC
"beq:
branch is not determined until the fourth stage of the pipeline

Instructions after the branch are fetched before branch is
resolved

= Always predict that the next sequential instruction is fetched
= Called “Always not taken” prediction

These instructions must be flushed if the branch is taken
= Branch misprediction penalty

number of instructions flushed when branch is taken

May be reduced by determining branch earlier

20

24

28

2C

30

64

5o )
Control Hazard

1 2 3 4 5 6 7 8 9

—

Time (cycles)

Flush
these
instructions

slt $t3, $s2, $s3

30



Causes of Pipeline Stalls

=Stall: A condition when the pipeline stops moving
=Resource contention

=Dependencies (between instructions)
Data hazard
Control hazard

= ong-latency (multi-cycle) operations

How Can You Handle Data Hazards?

= Insert “NOP”’s (No OPeration) in code at compile time
= Rearrange code at compile time
= Forward data at run time

= Stall the processor at run time

31



Data Forwarding/Bypassing

= Problem: A consumer (dependent) instruction has to wait in decode
stage until the producer instruction writes its value in the register file

= Goal: We do not want to stall the pipeline unnecessarily

= Observation: The data value needed by the consumer instruction can
be supplied directly from a later stage in the pipeline (instead of only

from the register file)

® |dea: Add additional dependence check logic and data forwardinﬁ
paths Lbuses) to supply the producer’s value to the consumer right
after the value is available

= Benefit: Consumer can move in the pipeline until the point the value
can be supplied = less stalling

Data Forwarding/Bypassing

= Use result when it is computed
Don’t wait for it to be stored in a register
Requires extra connections in the datapath

Program

execution . 200 400 600 800 1000
order Time T T T T T
(in instructions)

add $s0, $10, $t1 E’—t D
No bubble!
sub St2, $s0, $t3 E—E 1D

4-3=1, no stall!

32



Data Forwarding/Bypassing

= Can’t always avoid stalls by forwarding
If value not computed when needed
Can’t forward backward in time!

Program

execution 400 600 800 1000 1200 1400
order Time T v T T T T

(in instructions)

Iw $s0, 20($t1) IEI—E D

e Re)
sub §t2, 550, 513 IE’—E D Wa |

Code Scheduling to Avoid Stalls

s Reorder code to avoid use of load result in the next
instruction

m CcodeforA =B + E; C =B + F;

Tw  $t1, 0($t0) Tw  $t1, 0($t0)

Tw (52, 4(5t0) Tw 4($t0)
(el |— add $t3, $ti, @ Tw
sw

$t3, 12($t0) add $t3,
Tw @} 8 ($t0) sw $t3,

[stal ] — add $t5, $t1, '»’@ add $t5,

sw $t5, 16($t0) sw $t5, 16($t0)

33



Stall on Branch

= In MIPS pipeline
Need to compare registers and compute target earlier in the pipeline
Add extra hardware to do it in ID stage (earliest ?)

= Wait until branch outcome determined before fetching next
instruction

= 1 bubble when determine in ID

= Is no stall possible? IF, prediction

34



