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MICROPROCESSORS  
 

A program stored in the memory provides instructions to the CPU to perform a  specific 

action. This action can be a simple addition. It is function of the CPU to fetch  the program 

instructions from the memory and execute them. 

 

 The CPU contains a number of registers to store information inside the CPU  temporarily. 

Registers inside the CPU can be 8-bit, 16-bit, 32-bit or even 64-bit  depending on the 

CPU. 

 The CPU also contains Arithmetic and Logic Unit (ALU). The ALU performs  arithmetic 

(add, subtract, multiply, divide) and logic (AND, OR, NOT) functions. 

 The CPU contains a program counter also known as the Instruction Pointer to 

point the address of the next instruction to be executed. 

 Instruction Decoder is a kind of dictionary which is used to interpret the meaning  of the 

instruction fetched into the CPU. Appropriate control signals are generated  according to the 

meaning of the instruction. 2 
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MICROPROCESSORS  
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Internal block diagram of a CPU 
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 Instruction set architecture (ISA) is the interface 

between the hardware and the lowest-level software. 

This is one of the most important abstractions.  
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Instruction Set Architecture (ISA) 
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 An ISA includes the following … 

 Instructions and Instruction Formats 

Data Types, Encodings, and Representations 

 Programmable Storage: Registers and Memory 

 Addressing Modes: to address Instructions and Data 

Handling Exceptional Conditions (like overflow) 

Instruction Set Architecture (ISA) 
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ISA Classification 

Complex instruction set computer (CISC) 

x86/x64 (Intel and AMD) 

Reduced instruction set computer (RISC) 

ARM, PowerPC, MIPS, RISC-V 

Very long instruction word (VLIW) 

 Itanium, Elbrus  
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Instruction Set Architecture (ISA) 
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Reduced Instruction Set Computing (RISC) concept was 
proposed by  teams of researchers at Stanford University 
(John Hennessy) and University of California Berkeley (David 
Paterson) in early 1980s as an alternative of Complex 
Instruction Set Computing (CISC) dominating at that time. 
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Reduced Instruction Set Computing (RISC) 

RISC ISAs dominate – most   
mobile devices use ARM (RISC) 

Modern CISC ISAs (x86/x64)      
are RISC-like underneath 

2017 Turing Award to 
Patterson and Hennessy 

RISC vs. CISC 

8 
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 MIPS Microprocessor 

 MIPS (Microprocessor without Interlocked 
Pipelined Stages) is a family of reduced instruction 
set computer (RISC) instruction set architectures 
(ISA) ;  developed by MIPS Computer Systems, 
now MIPS Technologies, based in the United 
States.  

9 

Overview of the MIPS Architecture 

10 
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Overview of the MIPS Architecture 
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4 bytes per word 
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MIPS General-Purpose Registers 
 32 General Purpose Registers (GPRs) 

 All registers are 32-bit wide in the MIPS 32-bit architecture 

 Software defines names for registers to standardize their use 

 Assembler can refer to registers by name or by number ($ notation) 
Name Register Usage 

$zero $0 Always 0 (forced by hardware) 

$at $1 Reserved for assembler use 

$v0 – $v1 $2 – $3 Result values of a function 

$a0 – $a3 $4 – $7 Arguments of a function 

$t0 – $t7 $8 – $15 Temporary Values 

$s0 – $s7 $16 – $23 Saved registers (preserved across call) 

$t8 – $t9 $24 – $25 More temporaries 

$k0 – $k1 $26 – $27 Reserved for OS kernel 

$gp $28 Global pointer (points to global data) 

$sp $29 Stack pointer (points to top of stack) 

$fp $30 Frame pointer (points to stack frame) 

$ra $31 Return address (used by jal for function call) 

12 
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Special-Purpose Registers 

-PC (Program Counter), points to the next instruction to be executed 

-Hi :High result of multiplication and division operations 

-Lo :Low result of multiplication and division operations 

-SR (status): Status Register, Contains the interrupt mask and enable bits 

-CAUSE :  specifies what kind of interrupt or exception just happened. 

-EPC : Exception PC, Contains the address of the instruction when the 

exception occurred. 

-Vaddr: Bad Address Register, Contains the invalid memory address caused by 

load, store, or fetch. 

  13 

Instruction Formats 
 All instructions are 32-bit wide, Three instruction formats: 

 Register (R-Type) 

 Register-to-register instructions 

Op: operation code specifies the format of the instruction 

 

 
 Immediate (I-Type) 

 16-bit immediate constant is part in the instruction 

 

 
 Jump (J-Type) 

 Used by jump instructions 

Op6 Rs5 Rt5 Rd5 sa5 funct6 

Op6 Rs5 Rt5 immediate16 

Op6 immediate26 
14 
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R-Type Instruction Format 

 Op: operation code (opcode) 

 Specifies the operation of the instruction 

 Also specifies the format of the instruction 

 funct: function code – extends the opcode 

 Up to 26 = 64 functions can be defined for the same opcode 

 MIPS uses opcode 0 to define many R-type instructions 

 Three Register Operands (common to many instructions) 

 Rs, Rt: first and second source operands 

 Rd: destination operand 

 shamt: the shift amount used by shift instructions 

Op6 Rs5 Rt5 Rd5 shamt5 funct6 

15 

Encoding MIPS Instructions 

Field Opcode 

16 
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Encoding MIPS Instructions 

Field func when    OPCOD = SPECIAL 

17 

Encoding MIPS Instructions 

Examples: 

18 
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Encoding MIPS Instructions 

Examples: 

19 

From Assembly to Machine Code 
Let’s see an example of a R-format instruction, first as a combination of 

decimal numbers and then of binary numbers. Consider the instruction: 

add $t0, $s1, $s2 

 

The op and funct fields in combination (0 and 32 in this case) tell that this 

instruction performs addition (add). 

 

The rs and rt fields, registers $s1 (17) and $s2 (18), are the source operands, 

and the rd field, register $t0 (8), is the destination operand. 

 
The shamt field is unused in this instruction, so it is set to 0. 

20 
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From Assembly to Machine Code 
Thus, the decimal representation of instruction add $t0, $s1, $s2 is: 

• op = 000000 (special) 

• rs = 17 ($s1) 

• rt = 18 ($s2) 

• rd = 8 ($t0) 

• shamt = 0 (not used) 

• funct = 100000(add) 

The binary representation is: 

21 

Pseudo-Instructions 
Most assembler instructions represent machine instructions one-to-one. The 

assembler can also treat common variations of machine instructions as if they 

were instructions in their own right. Such instructions are called pseudo-

instructions. 

The hardware need not implement the pseudo-instructions, but their appearance 

in assembly language simplifies programming. Register $at (assembler 

temporary) is reserved for this purpose. 

blt $s1, $s2, L 🡪  slt $at, $s1, $s2 

 

li $s1, 20 
 

🡪  

bne $at, $zero, L 

addiu $s1, $zero, 20 

move $t0, $t1 🡪  addu $t0, $zero, $t1 
22 
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Addressing Modes 

MIPS addressing modes are: 
1. Immediate addressing where the operand is a constant in the instruction 

itself 

2. Register addressing where the operand is a register 

3. Base or displacement addressing where the operand is at the memory 
location whose address is the sum of a register and a constant in the 
instruction 

4. PC-relative addressing where the branch address is the sum of the PC 
with a constant in the instruction 

5. Pseudo-direct addressing where the jump address is a constant in 
the instruction concatenated with the upper bits of the PC 

23 

Addressing Modes 

24 
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Addressing Modes 

25 

Addressing Modes 

Immediate  
 
 
 
 
addi $t0, $t1, 5 

op rs rt Immediate 

26 
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Addressing Modes 

Register 
 
 
 
 
 
 
add $t0, $t1, $t2 

 

rs rt funct op rd 

Register 

27 

Addressing Modes 

Base (Arrays, structures, pointers) 
 
 
 
 
 
 
lw $t1, 4($s2) 
lw $t1, ($s2) #indirect addressing 
 
 

 

rs rt Address op 

Register 

Memory 

± 

28 
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Addressing Modes 
 
PC-relative (e.g., conditional branches, need an offset) 
 
 
 
 
 
beqz $t0, goEnd 
 
 

 
 
 Effective Address: adding a 16-bit address shifted left 2 bits to thePC 

rs rt Address (offset) op 

PC 

Memory 

± 

29 

Addressing Modes 

Pseudodirect  

 

 

 

 

Address op 

PC 

Memory 

concat 

 Effective Address: Concatenating a 26-bit address shifted left 2 bits with the 
4 upper bits of the PC. 

j  for 

30 
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Addressing Modes 

Examples: 

31 

Byte-‐Addressable Memory 

🞍  Each data byte has a unique address 

🞍  Load/store words or single bytes: load byte (lb) and  store byte 
(sb) 

🞍  Each 32-‐bit words has 4 bytes, so the word address  increments 
by 4. MIPS uses byte addressable memory 

     Word Address                     Data 

0000000C 

00000008 

00000004 

00000000 

4 0 F 3 0 7 8 8 

0 1 E E 2 8 4 2 

F 2 F 1 A C 0 7 

A B C D E F 7 8 

width = 4 bytes 

Word 3 

Word 2 

Word 1 

Word 0 

32 
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Address Space 

The MIPS address space is divided in four segments: 

• Text, which contains the program code 

• Data, which contains constants and global variables 

• Heap, which contains memory dynamically allocated during runtime 

• Stack, which contains temporary data for handling procedure calls 

 

The heap and stack segments grow toward each other, thereby allowing the 

efficient use of memory as the two segments expand and shrink. 

33 

Address Space 

34 
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Example Program: Executable 
Executable file header Text Size Data Size 

0x34 (52 bytes) 0xC (12 bytes) 

Text segment Address Instruction 

0x00400000 0x23BDFFFC 

0x00400004 0xAFBF0000 

0x00400008 0x20040002 

0x0040000C 0xAF848000 

0x00400010 0x20050003 

0x00400014 0xAF858004 

0x00400018 0x0C10000B 

0x0040001C 0xAF828008 

0x00400020 0x8FBF0000 

0x00400024 0x23BD0004 

0x00400028 0x03E00008 

0x0040002C 0x00851020 

0x00400030 0x03E0008 

Data segment Address Data 

0x10000000 

0x10000004 

0x10000008 

f g y 

35 

Example Program: In Memory 

36 

Reserved 

Stack 

 

 

 

Heap 

y 

g 

f 

0x03E00008 

0x00851020 

0x03E00008 

0x23BD0004 

0x8FBF0000 

0xAF828008 

0x0C10000B 

0xAF858004 

0x20050003 

0xAF848000 

0x20040002 

0xAFBF0000 

0x23BDFFFC 

Reserved 

$sp = 0x7FFFFFFC 0x7FFFFFFC 

0x10010000 

0x00400000 

$gp = 0x10008000 

PC = 0x00400000 

0x10000000 
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Fetch instruction 

Compute address of next instruction 

Generate control signals for instruction 

Read operands from registers 

Compute result value 

Writeback result in a register 

Fetch - Execute Cycle 

Instruction Decode 

Instruction Fetch 

Execute 

Writeback Result 

In
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Memory Access Read or write memory 
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MIPS Subset of Instructions 
 ALU instructions (R-type): add, sub, and, or, xor, slt 

 Immediate instructions (I-type): addi, slti, andi, ori, xori 

 Load and Store (I-type): lw, sw 

 Branch (I-type): beq, bne 

 Jump (J-type): j 

 This subset does not include all the integer instructions 

 But sufficient to illustrate design of datapath and control 

 Concepts used to implement the MIPS subset are used to construct a broad 

spectrum of computers 
38 
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Details of the MIPS Subset 
Instruction Meaning Format 

add rd, rs, rt addition op6 = 0 rs5 rt5 rd5 0 0x20 

sub rd, rs, rt subtraction op6 = 0 rs5 rt5 rd5 0 0x22 

and rd, rs, rt bitwise and op6 = 0 rs5 rt5 rd5 0 0x24 

or rd, rs, rt bitwise or op6 = 0 rs5 rt5 rd5 0 0x25 

xor rd, rs, rt exclusive or op6 = 0 rs5 rt5 rd5 0 0x26 

slt rd, rs, rt set on less than op6 = 0 rs5 rt5 rd5 0 0x2a 

addi rt, rs, imm16 add immediate 0x08 rs5 rt5 imm16 

slti rt, rs, imm16 slt immediate 0x0a rs5 rt5 imm16 

andi rt, rs, imm16 and immediate 0x0c rs5 rt5 imm16 

ori rt, rs, imm16 or immediate 0x0d rs5 rt5 imm16 

xori rt, imm16 xor immediate 0x0e rs5 rt5 imm16 

lw rt, imm16(rs) load word 0x23 rs5 rt5 imm16 

sw rt, imm16(rs) store word 0x2b rs5 rt5 imm16 

beq rs, rt, offset16 branch if equal 0x04 rs5 rt5 offset16 

bne rs, rt, offset16 branch not equal 0x05 rs5 rt5 offset16 

j address26 jump 0x02 address26 

Register Transfer Level (RTL) 

 RTL is a description of data flow between registers 

 RTL gives a meaning to the instructions 

 All instructions are fetched from memory at address PC 

Instruction  RTL Description 
 ADD Reg(rd) ← Reg(rs) + Reg(rt); PC ← PC + 4 

 SUB Reg(rd) ← Reg(rs) – Reg(rt); PC ← PC + 4 

 ORI Reg(rt) ← Reg(rs) | zero_ext(imm16);  PC ← PC + 4 

 LW Reg(rt) ← MEM[Reg(rs) + sign_ext(imm16)];  PC ← PC + 4 

 SW MEM[Reg(rs) + sign_ext(imm16)+ ← Reg(rt);  PC ← PC + 4 

 BEQ if (Reg(rs) == Reg(rt)) 
   PC ← PC + 4  + 4 × sign_ext(offset16) 
  else PC ← PC + 4 

40 
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Instruction Fetch/Execute 
 R-type Fetch instruction: Instruction ← MEM*PC+ 

  Fetch operands: data1 ← Reg(rs), data2 ← Reg(rt) 

  Execute operation: ALU_result ← func(data1, data2) 

  Write ALU result: Reg(rd) ← ALU_result 

  Next PC address: PC ← PC + 4 

 I-type Fetch instruction: Instruction ← MEM*PC+ 

  Fetch operands: data1 ← Reg(rs), data2 ← Extend(imm16) 

  Execute operation: ALU_result ← op(data1, data2) 

  Write ALU result: Reg(rt) ← ALU_result 

  Next PC address: PC ← PC + 4 

 BEQ Fetch instruction: Instruction ← MEM*PC+ 

  Fetch operands: data1 ← Reg(rs), data2 ← Reg(rt) 

  Equality: zero ← subtract(data1, data2)  

  Branch: if (zero) PC ← PC + 4 + 4×sign_ext(offset16) 

   else PC ← PC + 4 
41 

Instruction Fetch/Execute 
 LW Fetch instruction: Instruction ← MEM*PC+ 

  Fetch base register: base ← Reg(rs) 

  Calculate address: address ← base + sign_extend(imm16) 

  Read memory: data ← MEM*address+ 

  Write register Rt: Reg(rt) ← data 

  Next PC address: PC ← PC + 4 

 SW Fetch instruction: Instruction ← MEM*PC+ 

  Fetch registers: base ← Reg(rs), data ← Reg(rt) 

  Calculate address: address ← base + sign_extend(imm16) 

  Write memory: MEM*address+ ← data 

  Next PC address: PC ← PC + 4 

 Jump Fetch instruction: Instruction ← MEM*PC+ 

  Target PC address: target ← PC*31:28+ || address26 ||  ‘00’ 

  Jump: PC ← target 

42 
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Requirements of the Instruction Set 
Memory 
 Instruction memory where instructions are stored 
Data memory where data is stored 

Registers 
31 × 32-bit general purpose registers, R0 is always zero 
Read source register Rs 
Read source register Rt 
Write destination register Rt or Rd 

Program counter PC register and Adder to increment PC 
Sign and Zero extender for immediate constant 
ALU for executing instructions 

43 

Pipelining 

44 
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Pipelining: Basic Idea 

More systematically: 

 Pipeline the execution of multiple instructions 

 Analogy: “Assembly line processing” of instructions 
 

 Idea: 

 Divide the instruction processing cycle into distinct “stages” of processing 

 Ensure there are enough hardware resources to process one instruction in each stage 

 Process a different instruction in each stage 
 Instructions consecutive in program order are processed in consecutive stages 

 

 Benefit: Increases instruction processing throughput (1/CPI) 
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Example: Execution of Four Independent ADDs 

Multi-cycle: 4 cycles per instruction 

 

 

 

Pipelined: 4 cycles per 4 instructions 

 

 

 

 

 

 

Time 

F D E W 

F D E W 

F D E W 

F D E W 

F D E W 

F D E W 

F D E W 

F D E W 

Time 

1 instruction completed per cycle 

46 
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The Laundry Analogy  
 

 

 

 
 

 

 “place one dirty load of clothes in the washer” 

 “when the washer is finished, place the wet load in the dryer” 

 “when the dryer is finished, take out the dry load and fold” 

 “when folding is finished, ask your roommate (??) to put the clothes away” 

 

Time
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D

Time
76 PM 8 9 10 11 12 1 2 AM

A
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C

D

Task


order

Task


order

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.] 
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Pipelining Multiple Loads of Laundry 
 

Time
76 PM 8 9 10 11 12 1 2 AM
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Time
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A
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C
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order

Task


order

- latency per load is the same 

- throughput increased by 4 

- 4 loads of laundry in parallel 

- no additional resources 

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.] 

48 
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Remember: The Instruction Processing Cycle 

49 

Pipelining and ISA Design 

MIPS ISA designed for pipelining 

 All instructions are 32-bits 

 Easier to fetch in one cycle 

 Few and regular instruction formats 

 Can decode and read registers in one step 

 Load/store addressing 

 Can calculate address in 3rd stage, access memory  in 4th stage 

 Alignment of memory operands 

 Memory access takes only one cycle 
50 
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Remember: The Instruction Processing Cycle 

51 

Pipelining Abstraction 

Time (cycles) 

lw $s2, 40($0) F R 40 
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Illustrating Pipeline Operation: Operation View 

MEM 

EX 

ID 

IF Inst4 

WB 

IF 

MEM 

IF 
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EX 
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WB 
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EX 
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(full pipeline) 
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Illustrating Pipeline Operation: Resource View 
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Instruction Pipeline: Not An Ideal Pipeline 

Identical operations ... NOT!  

    different instructions  not all need the same stages 
    Forcing different instructions to go through the same pipe stages 
 external fragmentation (some pipe stages idle for some instructions) 

 
Uniform suboperations  ...  NOT!  

    different pipeline stages  not the same latency 
            Need to force each stage to be controlled by the same clock 

 internal fragmentation (some pipe stages are too fast but all take the same clock cycle time) 
 

Independent operations ... NOT! 

    instructions are not independent of each other 
   Need to detect and resolve inter-instruction dependences to ensure the pipeline provides 
correct results 
 pipeline stalls (pipeline is not always moving) 

55 

Pipelining Hazards 

56 
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Structural hazard 

Caused by limitations in hardware that don’t allow 
concurrent execution of different instructions 

Examples 
Bus 
Single ALU 
Single Memory for instructions and data 
Single IR 

Remedy is to add additional elements to datapath to 
eliminate hazard 

 
57 

Data Hazards Types 

 
r3          r1  op  r2             Read-after-Write   
r5    r3  op  r4   (RAW) 
 

 
r3     r1  op  r2  Write-after-Read  
r1     r4  op  r5   (WAR) 
  
 
r3    r1  op  r2   Write-after-Write  
r5    r3  op  r4   (WAW) 
r3    r6  op  r7   

 An instruction depends on completion of  data access by a 

previous instruction 

58 
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Control Hazard 

Special case of data dependence: dependence on PC 

beq:  
branch is not determined until the fourth stage of the pipeline 
 Instructions after the branch are fetched before branch is 

resolved 
 Always predict that the next sequential instruction is fetched 
 Called “Always not taken” prediction 

These instructions must be flushed if the branch is taken 

Branch misprediction penalty 
number of instructions flushed when branch is taken 
May be reduced by determining branch earlier 

59 

Control Hazard 

Time (cycles)

beq $t1, $t2, 40 RF $t2

$t1

RF- DM

RF $s1

$s0

RF& DM

RF $s0

$s4

RF| DM

RF $s5

$s0

RF- DM

and $t0, $s0, $s1

or  $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM
lw

or

sub

20

24

28

2C

30

...

...

9

Flush

these

instructions

64 slt $t3, $s2, $s3 RF $s3

$s2

RF
$t3s

l
t DMIM

slt
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Causes of Pipeline Stalls 
Stall: A condition when the pipeline stops moving 

 
Resource contention 

 
Dependencies (between instructions) 
Data hazard 
Control hazard 

 

Long-latency (multi-cycle) operations 
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How Can You Handle Data Hazards? 

■ Insert “NOP”s (No OPeration) in code at compile time 
 

■ Rearrange code at compile time 
 

■ Forward data at run time 
 

■ Stall the processor at run time 

62 
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Data Forwarding/Bypassing 
Problem: A consumer (dependent) instruction has to wait in decode 

stage until the producer instruction writes its value in the register file 
 

Goal: We do not want to stall the pipeline unnecessarily 
 

Observation: The data value needed by the consumer instruction can 
be supplied directly from a later stage in the pipeline (instead of only 
from the register file) 
 

 Idea: Add additional dependence check logic and data forwarding 
paths (buses) to supply the producer’s value to the consumer right 
after the value is available 
 

Benefit: Consumer can move in the pipeline until the point the value 
can be supplied  less stalling 

63 

 Use result when it is computed 

 Don’t wait for it to be stored in a register 

 Requires extra connections in the datapath 

No bubble! 

4-3=1, no stall! 

Data Forwarding/Bypassing 

64 
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 Can’t always avoid stalls by forwarding 

 If value not computed when needed 

 Can’t forward backward in time! 

Data Forwarding/Bypassing 

65 

Code Scheduling to Avoid Stalls 

 Reorder code to avoid use of load result in  the next 

instruction 

 C code for A = B + E; C = B + F; 

lw $t1, 

lw $t2,  

add $t3,  

sw $t3, 

lw $t4,  

add $t5,  

sw $t5, 

0($t0) 

4($t0) 

$t1, $t2  

12($t0) 

8($t0) 

$t1, $t4  

16($t0) 

stall 

stall 

lw $t1, 

lw $t2, 

lw $t4,  

add $t3,  

sw $t3,  

add $t5,  

sw $t5, 

0($t0) 

4($t0) 

8($t0) 

$t1, $t2  

12($t0) 

$t1, $t4  

16($t0) 

11 cycles 13 cycles 
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34 

Stall on Branch 

 In MIPS pipeline 

 Need to compare registers and compute target earlier  in the pipeline 

 Add extra hardware to do it in ID stage (earliest ? ) 

 Wait until branch outcome determined  before fetching next 

instruction 

 1 bubble when determine in ID 

 Is no stall possible? IF, prediction 

67 


