TP n°01

Dosage spectrophotométrique de l'activité de la catalase

1. Principe

La catalase est une enzyme antioxydante présente dans tous les organismes aérobies. Elle catalyse la décomposition du peroxyde d'hydrogène en eau et oxygène selon la réaction:

$$2 \text{ H}_2\text{O}_2 \longrightarrow 2 \text{ H}_2\text{O} + \text{O}_2$$

Le dosage est basé sur la mesure de la **disparition du substrat** (H_2O_2). Le peroxyde d'hydrogène restant après l'action enzymatique oxyde l'**iodure de potassium** en iode, formant une coloration jaune-brun proportionnelle à la concentration en H_2O_2 , mesurable à **350 nm**.

2. Objectifs

- Maîtriser une méthode quantitative de dosage enzymatique par spectrophotométrie.
- Caractériser l'activité de la catalase dans un extrait végétal.

3. Matériel et produits

Produits chimiques

Peroxyde d'hydrogène (H₂O₂) 30%.

Iodure de potassium (KI).

Thiosulfate de sodium (Na₂S₂O₃·5H₂O).

Molybdate d'ammonium $((NH_4)_2MoO_4)$.

Acide sulfurique concentré (H₂SO₄).

Tampon phosphate pH=7.

Pomme de terre fraîche.

Eau distillée.

Matériel spécifique

Spectrophotomètre réglé à 350 nm.

Bain-marie thermostaté à 30°C.

Cuvettes spectrophotométriques.

Pipettes automatiques (0,1-1 ml et 1-5 ml).

Tubes à essai et portoir.

Mortier et pilon.

Entonnoir et papier filtre.

Bécher 100 ml.

Fioles jaugées 10, 50 et 100 ml.

Chronomètre.

Glace.

4. Préparation des solutions

4.1. Solution d'acide sulfurique 1 mol/L (50 ml)

- Sous hotte, verser 45 ml d'eau distillée dans un bécher.
- Ajouter lentement 2,78 ml d'acide sulfurique concentré en agitant.
- Laisser refroidir et compléter à 50 ml avec de l'eau distillée.
- Étiqueter "H₂SO₄ 1 mol/L Corrosif"

4.2. Réactif iodure (10 ml)

- Dissoudre 1 g d'iodure de potassium dans 8 ml d'eau distillée.
- Ajouter 0,01 g de molybdate d'ammonium comme catalyseur.

Méthodes de Caractérisation des Substances Bioactives d'origine Microbienne Année Universitaire : 2025-2026

- Compléter à 10 ml avec de l'eau distillée.
- Conserver dans un flacon brun à 4°C.

4.3. Solution de peroxyde d'hydrogène 50 mmol/L (10 ml)

- Prélever 0,057 ml de H₂O₂ 30% à l'aide d'une micropipette.
- Introduire dans une fiole jaugée de 10 ml.
- Compléter au trait de jauge avec de l'eau distillée.
- Préparer extemporanément.

4.4. Solution de thiosulfate 0,1 mol/L (5 ml)

- Dissoudre 0,124 g de thiosulfate de sodium dans 5 ml d'eau distillée.
- Utiliser dans l'heure.

5. Protocole expérimental

5.1. Préparation de l'extrait enzymatique

- 1. Éplucher et peser 10 g de pomme de terre.
- 2. Découper en petits cubes et placer dans le mortier.
- 3. Ajouter 50 ml de tampon phosphate pH 7,0.
- 4. Broyer énergiquement pendant 3 minutes.
- 5. Filtrer le broyat sur papier filtre placé dans un entonnoir.
- 6. Recueillir le filtrat limpide (= extrait enzymatique concentré).
- 7. Conserver sur glace.

5.2. Préparation des dilutions enzymatiques

- **Dilution 1/2**: 1 ml d'extrait + 1 ml de tampon.
- **Dilution 1/5**: 0.4 ml d'extrait + 1.6 ml de tampon.
- **Dilution 1/10**: 0,2 ml d'extrait + 1,8 ml de tampon.

5.3. Courbe d'étalonnage du peroxyde d'hydrogène

Préparation des standards :

Tube	[H ₂ O ₂] finale	H ₂ O ₂ (50 mmol/L)	Tampon	H ₂ SO ₄ (1 mol/L)	KI
T0	0 mmol/L	0,0 ml	1,35 ml	0,1 ml	0,25 ml
T10	10 mmol/L	0,3 ml	1,05 ml	0,1 ml	0,25 ml
T20	20 mmol/L	0,6 ml	0,75 ml	0,1 ml	0,25 ml
T30	30 mmol/L	0,9 ml	0,45 ml	0,1 ml	0,25 ml
T40	40 mmol/L	1,2 ml	0,15 ml	0,1 ml	0,25 ml
T50	50 mmol/L	1,5 ml	0,00 ml	0,1 ml	0,25 ml

Procédure:

- 1. Préparer chaque tube dans l'ordre indiqué.
- 2. Agiter après chaque addition.
- 3. Laisser développer la couleur pendant 5 minutes.
- 4. Mesurer l'absorbance à 350 nm contre un blanc d'eau.
- 5. Tracer la courbe $A_{350} = f([H_2O_2])$.

Méthodes de Caractérisation des Substances Bioactives d'origine Microbienne Année Universitaire : 2025-2026

5.4. Contrôle de spécificité au thiosulfate

- 1. Préparer un tube identique au tube T50. Attendre 5 minutes.
- 2. Après développement de la couleur, ajouter 0,05 ml de thiosulfate 0,1 mol/L.
- 3. Observer la décoloration complète qui confirme la spécificité de la réaction.

5.5. Mesure de l'activité catalasique

Pour chaque dilution enzymatique:

Temps -2 minutes:

- Préparer le mélange réactionnel : 1,25 ml de tampon + 0,10 ml de H₂O₂ 50 mmol/L.
- Placer au bain-marie à 30°C pour préincubation.

Temps 0:

- Ajouter rapidement 0,05 ml d'extrait enzymatique dilué.
- Agiter immédiatement au vortex.
- Remettre au bain-marie et démarrer le chronomètre.

Temps +1 minute:

- Sortir le tube du bain-marie.
- Ajouter immédiatement 0,10 ml de H₂SO₄ 1 mol/L pour arrêter la réaction.
- Agiter vigoureusement.

Temps +2 minutes:

- Ajouter 0,25 ml de réactif iodure.
- Agiter.

Temps +7 minutes:

- Transférer dans une cuvette.
- Mesurer l'absorbance à 350 nm.

Réaliser également :

- Un témoin sans enzyme (remplacer l'extrait par du tampon).
- Toutes les dilutions enzymatiques.

☐ Sécurité et précautions

H₂O₂ 30%: corrosive, porter des gants et lunettes.

H₂SO₄ concentré : manipulation sous hotte.

KI: solution stable à l'abri de la lumière.

Déchets : neutraliser les solutions acides avant rejet.

6. Compte-rendu du travail

- 1. Pourquoi utilise-t-on H₂SO₄ pour arrêter la réaction ?
- 2. Quel est le rôle de l'ammonium molybdate dans le réactif iodure ?
- 3. La relation entre activité et dilution est-elle linéaire ? Justifiez.
- 4. Calculez l'activité spécifique de votre préparation enzymatique.
- 5. Calculez le coefficient d'extinction molaire.
- 6. Quels contrôles additionnels devriez-vous inclure pour vous assurer que la dégradation du H₂O₂ est bien due à la catalase et non à d'autres peroxydases présentes dans l'extrait ?

Méthodes de Caractérisation des Substances Bioactives d'origine Microbienne Année Universitaire : 2025-2026

- 7. Quelles différences d'activité catalasique prédiriez-vous entre une pomme de terre fraîche et une pomme de terre stockée longtemps ? Justifiez votre réponse.
- 8. Un étudiant obtient une courbe d'étalonnage non linéaire. Quelles sont les causes possibles et comment y remédier ?
- 9. Si l'absorbance de vos échantillons dépasse 1,5, quelles modifications devriez-vous apporter au protocole tout en conservant la validité des résultats ?
- 10. Vous observez une précipitation dans le réactif iodure. Quelle en est la cause probable et comment prépareriez-vous une nouvelle solution ?