

Computer components

There are three main components of a Computer System.

- <u>Central Processing Unit (CPU)</u>: Also simply called as the microprocessor acts as the brain coordinating all activities within a computer.
- Memory: The program instructions and data are primarily stored.
- Input/output (I/O) Devices: Allow the computer to input information for processing and then output the results. I/O Devices are also known as computer peripherals.
- The integrated Circuit (IC) chip containing the CPU is called the <u>microprocessor</u>.
- A microcomputer is a relatively smaller computer with a central processing unit (<u>CPU</u>) as a <u>microprocessor</u>. A microcomputer is typically used as a personal computer (PC) which is smaller than a mainframe computer.

Computer components

There two types of memory used in microcomputers:

- RAM (Random Access Memory/ Read-Write memory) is used by the computer for the temporary storage of the programs that is running. Data is lost when the computer is turned off. So known as volatile memory.
- ROM (Read Only Memory) the information in ROM is permanent and not lost when the power is turned off. Therefore, it is called nonvolatile memory.

Note that RAM is sometimes referred as *primary storage*, where magnetic /optical disks are called *secondary storage*.

Memory and Storage Devices

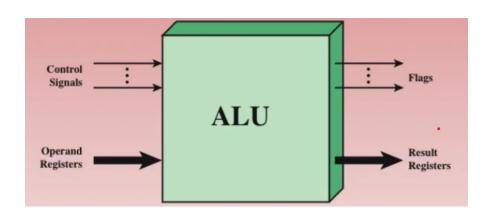
- Volatile Memory Devices
 - RAM = Random Access Memory
 - DRAM = Dynamic RAM
 - Dense but must be refreshed (typical choice for main memory)
 - SRAM: Static RAM
 - Faster but less dense than DRAM (typical choice for cache memory)
- Non-Volatile Storage Devices
 - Magnetic Disk
 - Flash Memory (Solid State Disk)
 - Optical Disk (CDROM, DVD)

Units for Storage and Memory

Full Form	Units	Bytes
1 Bit	Binary Digit (0/1)	
1 Nibble	4 bits	
1 Byte	8 bits	
1 kilobyte(KB)	1024 byte	10 bytes 2
1 Megabyte(MB)	1024 KB	2 ²⁰ bytes
1 Gigabyte (GB)	1024 MB	30 bytes
1 Terabyte(TB)	1024 GB	2 ⁴⁰ bytes
1 Petabyte(PB)	1024 TB	2 ⁵⁰ bytes
1 Exabyte(EB)	1024 PB	2 60 bytes
1 Zettabyte(ZB)	1024 EB	2 ⁷⁰ bytes
1 Yottabyte(YB)	1024 ZB	2 80 bytes
1 Brontobyte	1024 YB	2 ⁹⁰ bytes
1 Geopbyte	1024 Brontobyte	2 100 bytes

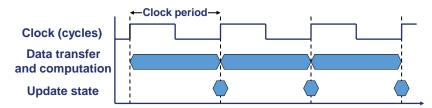
7

Computer components


The CPU is connected to memory and I/O devices through a strip of wires called a <u>bus</u>. The bus inside a computer carries information from place to place. There are three types of busses:

- Address Bus: The address bus is used to identify the memory location or I/O device the processor intends to communicate with. The width of the Address Bus rages from 20 bits (8086) to 36 bits for (Pentium II).
- <u>Data Bus:</u> Data bus is used by the CPU to get data from / to send data to the memory
 or the I/O devices. The width of a microprocessor is used to classify the microprocessor.
 The size of data bus of Intel microprocessors vary between 8-bit (8085) to 64-bit
 (Pentium).
- Control Bus: How can we tell if the address on the bus is memory address or an I/O device address? This is where the control bus comes in. Each time the processor outputs an address it also activates one of the four control bus signals: Memory Read, Memory Write, I/O Read and I/O Write.

The *address and control bus* contains output lines only, therefore it is *unidirectional*, but the *data bus* is *bidirectional*.


8

Arithmetic Logic Unit (ALU)

9

CPU Clocking

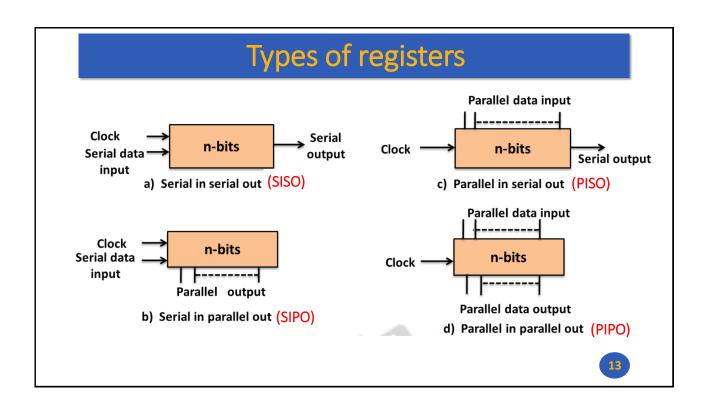
- Operation of digital hardware governed by a constant-rate clock
- Clock period: duration of a clock cycle
 - e.g., 250 ps = 0.25 ns = 250×10^{-12} s
- Clock frequency (rate): cycles per second
 - e.g., 4.0 GHz = 4000 MHz = 4.0×10⁹ Hz

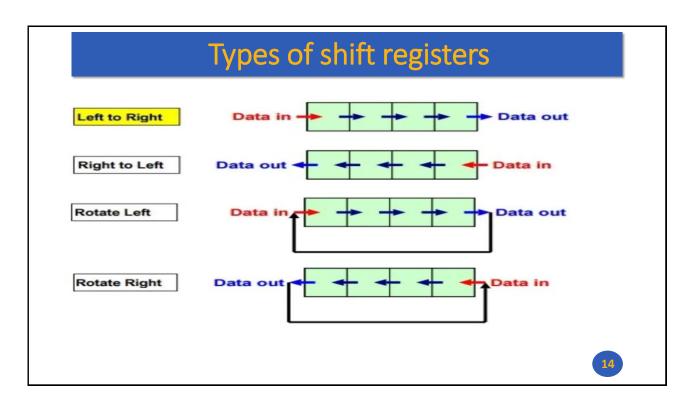
10

CPU Time

 $CPU Time = \frac{Instructions}{Program} \times \frac{Clock \ cycles}{Instruction} \times \frac{Seconds}{Clock \ cycle}$

- Performance depends on
 - Algorithm: affects IC, possibly CPI
 - Programming language: affects IC, CPI
 - Compiler: affects IC, CPI
 - Instruction set architecture: affects IC, CPI, T_c


11


Registers & Counter

Circuits that include flip-flops are usually classified by the function they perform

- Registers
- Counters
- Register is a group of flip-flops.
- Each flip-flop is capable of storing one bit of information.
- An n-bit register consists of a group of n flip-flops.
- Register is a group of binary cells suitable for holding binary information.
- A counter is essentially a register that goes through a predetermined sequence of states.

12

Applications of registers

- ➤ Shift Registers are an important Flip-Flop configuration with a wide range of applications, including:
- Computer and Data Communications
- Serial and Parallel Communications
- Multi-bit number storage
- Sequencing
- Basic arithmetic such as scaling (a serial shift to the left or right will change the value of a binary number a power of 2)
- Logical opérations

