
Introduction

1 Elements of Mathematical Language

1.1 Elements of Mathematical Language

We can view mathematical language as a construction game, whose goal is to
produce true statements. The basic rule of this game is that a mathematical
statement can only be true or false. It cannot be ”almost true” or ”half false.”
One constraint will therefore be to avoid all ambiguity and each word must
have a precise mathematical meaning. Depending on the case, a mathematical
statement may have dierent names:

Assertion: This is the term we use most often to designate a statement
about which we can say whether it is true or false.

Expression: This is a set of signs (letters, numbers, symbols, words,...)
possessing a meaning in a given context.

Axiom: This is a statement assumed to be true and which we do not seek
to prove.

Theorem: This is a statement whose truth must be established.
Corollary: This is a direct consequence of a theorem.
Lemma: This is a preparatory theorem for establishing a theorem of greater

importance.
Proposition: This is a term for a proven result less important than a

theorem.
Conjecture: This is a statement that we suppose to be true without being

able to prove it. It is a plausible hypothesis in view of some examples.
Examples:
Axioms: The axiomatic denition of natural numbers by Peano is usually

informally described by ve axioms:

• The element called zero and denoted 0 is a natural number.

• Every natural number n has a unique successor denoted S(n) or Sn.

• No natural number has 0 as its successor.

• Two natural numbers with the same successor are equal.

• If a set of natural numbers contains 0 and contains the successor of each
of its elements, then this set is equal to N .

Conjecture: (Goldbach’s Conjecture) Every even integer strictly greater than
2 is the sum of two prime numbers.

Theorem: Everyone knows the theorems of Thales, Pythagoras and the in-
termediate value theorem in Analysis.

We have Fermat’s Last Theorem: ”There do not exist non-zero integers
x, y, z when the power n is strictly greater than 2 satisfying the equation: xn +
yn = zn”
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which remained in the state of a conjecture for 350 years before being nally
completely proven by Andrew Wiles in 1994.

Expression:

• Let x be a real number, we consider the expression 3x2 + 4x− 5.

• In the plane, we consider ABC a triangle.

• Let f be a function dened on R by f(x) = ex.

1.2 Writing Mathematical Proofs

1.2.1 Basic Principles

Mathematical writing aims to clearly make the reader understand a mathemat-
ical problem. However, writing, unlike mathematics, is not an exact science,
meaning that several writings are possible for the same problem.

In general, the writing of a question should include three parts:

• The introduction

• The reasoning

• The conclusion

Here are some indications to improve writing and learn some useful conven-
tions that are good to know:

1/ Introduce what you are talking about
Introduce all the variables used, even if they are dened in the statement.

For example:

• Let n ∈ N .

• For all n ∈ N

We can introduce a personal variable, for example, in the study of a function
when the zeros of the derivative have a somewhat long expression and we must
draw the variation table.

Example: Let x1 = 1+
√
2

2 and x2 = 1−
√
2

2 .
Highlight logical articulations:
Some small words very useful in writing:

• therefore, then, it follows, hence, consequently, thus,

• but, we know that, moreover, furthermore, next, nally,

• but, however, nevertheless, since, as, because,...

4



These small words allow us to put coherence in our reasoning and make the
reading clearer.

Example: Show that ∀x ∈ [0, 1],
√
1− x2 ∈ [0, 1].

Let x ∈ [0, 1], by the increasing nature of the square function on R+, we
have

0 ≤ x2 ≤ 1

Consequently
0 ≤ 1− x2 ≤ 1

By the increasing nature of the square root function on R+:

0 ≤


1− x2 ≤ 1

Consequently: ∀x ∈ [0, 1],
√
1− x2 ∈ [0, 1].

Announce what you are doing:
Writing a question correctly in mathematics also means explaining what

you are doing. Announce the resolution method at the beginning: ”Let us show
that..., Let us show by contradiction that..., It remains only to show that...”.

Cite a denition or a theorem:
Citing a denition or a theorem must be done precisely. You must give

clearly and without error the hypotheses, notations and conclusion.
A poorly written theorem, imprecise, a missing hypothesis, all this gives an

impression of lack of rigor and can lead to an erroneous conclusion.
Example: Dene the derivative number of a function at a point.
Incorrect answer: The derivative number of f at a is:

f ′(a) = lim
h→0

f(a+ h)− f(a)

h


Lack of precision, who are f and a? Why does the limit of the dierence
quotient exist?

Correct answer: Let f be a function dened on the interval I and a ∈ I.

We say that f is dierentiable at a if and only if the limit limh→0
f(a+h)−f(a)

h
exists and is nite.

We call this limit the ”derivative number” of f at a which we denote f ′(a).
No mixing of genres:
Write in English or in mathematics but not both at once, for example: We

write ”the sum of two integers is an integer” or ”∀m,n ∈ Z,m + n ∈ Z” but
not: ”∀m,n ∈ Z, the sum of m and n is an integer.”

Make the dierence between f and f(x):
Incorrect writing: The function x

x2+1 is dierentiable on R.
Correct writing: The function x → x

x2+1 is dierentiable on R.
Indeed x

x2+1 is not a function but an algebraic expression; a function is a
relation that associates with a quantity x called a variable the quantity f(x).
We then denote it x → f(x).

Showing an implication:
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When we want to show that p ⇒ q, we proceed by one of the following two
methods:

1/ We assume that p is true and we show that then q is true.
Example: If n is an odd natural number then the integer 3n+ 7 is even.
Let n be an odd natural number, then there exists k ∈ N such that: n =

2k + 1. Consequently, we have 3n + 7 = 3(2k + 1) + 7 = 6k + 10 = 2(3k + 5).
Therefore there exists k′ ∈ N such that 3n + 7 = 2k′, which proves that the
integer 3n+ 7 is even.

2/ By contrapositive. We assume that ”not q” is true and we show that then
”not p” is true.

Example: The classic example of using proof by contrapositive concerns
the injectivity of a mapping.

Thus to show that a function f : E → F is injective, we can show the logical
implication: ∀x1, x2 ∈ E, x1 ̸= x2 ⇒ f(x1) ̸= f(x2).

But often it is simpler to show the contrapositive: ∀x1, x2 ∈ E, f(x1) =
f(x2) ⇒ x1 = x2.

Showing that an implication is false:
To show the implication p ⇒ q is false, it suces to nd a counterexample

where proposition p is true and proposition q is false.
Example: Consider the proposition ”the sequence (Un) is increasing there-

fore the sequence (Un) is divergent”.
We must therefore nd a counterexample of a sequence that is increasing and

convergent. We can easily verify that the sequence (Un) dened by Un = 1− 1
n

is increasing and its limit is nite.
Showing an equivalence: To show that p ⇔ q, we can proceed in two

ways:
Either we reason by equivalence, as is the case in solving equations. Or we

reason by double implication: we assume that p is true and we then show that
q is true and conversely, we assume that q is true and we show that p is true.

Proof by contradiction:
When we want to show that a property p is true, we can reason by contra-

diction, i.e. assume p is false and arrive at a contradiction.
Example: Show the irrationality of

√
2.

Writing a proof by induction:
Reasoning by induction obeys the following principle: let Pn be a proposition

that depends on a natural number n:
If P0 is true and if ∀n ∈ N : Pn ⇒ Pn+1, then ∀n ∈ N,Pn is true.
Example: Let the sequence (vn), v0 = 10 and for all n ∈ N : vn+1 =√

vn + 6. Prove that the proposition Pn: 3 ≤ vn ≤ 10 is true for all n ∈ N .

1.3 Expression ”Without Loss of Generality”

It happens that two or more cases in a proof are similar and writing them
separately seems repetitive or unnecessary.

Example: Show that if two integers have dierent parities then their sum
is an odd integer.
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Proof: Let m and n be two integers of dierent parities, we must show that
m+ n is an odd integer.

We have two cases:

• Case 1: Suppose thatm is even and n is odd, then there exist two integers a
and b such thatm = 2a and n = 2b+1. Hence we obtainm+n = 2(a+b)+1
which is odd.

• Case 2: Suppose now that m is odd and n is even, then there exist two
integers a and b such that m = 2a + 1 and n = 2b. Therefore we obtain
m+ n = 2(a+ b) + 1 which is odd.

We note that the two cases are treated in the same way. In general in
mathematics, we avoid this repetition by using the expression ”without loss of
generality”, the previous proof would be for example:

Let m and n be two integers of dierent parities, we must show that m+ n
is an odd integer.

Without loss of generality, suppose that m is even and n is odd, then there
exist two integers a and b such that m = 2a and n = 2b + 1. Hence we obtain
m+ n = 2(a+ b) + 1 which is odd.

1.4 Constructive Proofs and Existential Proofs

Existential Proofs

Proposition 1.1 There exist two irrational numbers x and y such that xy is
rational.

We know that
√
2 is irrational. We then consider the number

√
2
√
2
which

is either rational or irrational.

If
√
2
√
2
is rational, the proposition is proven by considering x = y =

√
2.

If
√
2
√
2
is irrational, then by setting x =

√
2
√
2
and y =

√
2, we then obtain

xy = (
√
2
√
2
)
√
2 = 2 and the proposition is proven.

The proof of the existence of two irrational numbers x and y such that xy is
rational is done without being able to give an example of two irrational numbers
that satisfy xy ∈ Q.

This type of proof is called a ”non-constructive proof” or ”existential proof”
in mathematical language.

Constructive Proofs

Proposition 1.2 There exist two irrational numbers x and y such that xy is
rational.

Let x =
√
3 and y = log3(4). x and y are irrational and we have:

xy =
√
3
log3(4)

= 3
1
2 log3(4) = 3log3(4)

1
2 = 3log3(2) = 2
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