TD 1

(Mathematical Foundations of Complex Numbers)

Exercise 1:

From the trigonometric form of a complex number, show that every complex number admits another form called the exponential form, which is expressed in terms of its modulus and argument.

Exercise 2:

By applying Euler's formula, calculate the linear expression of $\cos^4 x$, $\cos^3 x$, $\sin^2 x$.

It is given that:
$$(a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$$

Exercise 3:

Let the complex number z = 1 - j.

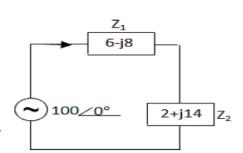
By applying Moivre's theorem, calculate $(1-j)^{20}$.

Exercise 4:

An alternating sinusoidal voltage is applied:

$$u(t) = 1.3 \sin(\omega t + 0.3)$$

to an electrical impedance:


$$Z = 49.36 - i 31.19$$
.

- 1. Write the expression of the impedance in polar form.
- 2. Give the expression of the current i(t) flowing through this impedance.

Exercise 5:

Consider the circuit shown in the figure.

- 1. Calculate the equivalent impedance $Z_{eq} = z_1 + z_2$
- 2. Calculate the current III flowing through the circuit.

