University center of Mila Abdelhafid Bousouf

Institute of Mathematics and Computer Science

probability and statistics

3rd year computer science

Serie N 3

Note: questions marked (*) left to the students

Exercise 1:

Two events A and B are such that $\mathbb{P}(A) = 0.5$, $\mathbb{P}(B) = 0.3$, and $\mathbb{P}(A \cap B) = 0.1$. Calculate

- 1. $\mathbb{P}(A|B)$
- 2. $\mathbb{P}(B|A)$
- $3.\mathbb{P}(A|A\cup B)$
- $4.\mathbb{P}(A|A\cap B)$
- 5. $\mathbb{P}(A \cap B | A \cup B)$.

Exercise 2:(*)

Let A, B and C be events. We pose $E_1 = A \cap B \cap C$ And $E_2 = A \cap (B \cup C)$.

- 1. Show that E_1 and E_2 are incompatible. 2. Determine the set $E_1 \cup E_2$.
- 3. We know that $\mathbb{P}(A) = 0, 6$, $\mathbb{P}(B) = 0, 4$, $\mathbb{P}(C) = 0, 3$, $\mathbb{P}(B \cap C) = 0, 1$, $\mathbb{P}(A \cap C) = 0, 1$, $\mathbb{P}(A \cap B) = 0, 2$ and $\mathbb{P}(A \cap B \cap C) = 0, 05$.

Calculate $\mathbb{P}(E_1) + \mathbb{P}(E_2)$ and deduce $\mathbb{P}(E_1)$.

Exercise 3:

Let A and B be two events such that $\mathbb{P}(A) = \frac{1}{5}$ and $\mathbb{P}(A \cup B) = \frac{1}{2}$.

- 1. Suppose A and B are incompatible. Calculate $\mathbb{P}(B)$.
- 2. Suppose A and B are independent. Calculate $\mathbb{P}(B)$.
- 3. Calculate $\mathbb{P}(B)$ assuming that event A can only occur if event B occurs.

Exercise 4:

An urn contains r red balls and b blue balls, $r \ge 1$, $b \ge 3$. Three balls are selected, without replacement, from the urn. Using the notion of conditional probability to simplify the problem, find the probability of the sequence Blue, Red, Blue.

Exercise 5:(*)

Students in a class are randomly selected one after the other to take an exam.

Calculate the probability p that we have alternately a boy and a girl knowing that:

- 1. The class is composed of 4 boys and 3 girls.
- 2. The class is made up of 3 boys and 3 girls.

Exercise 6:(*)

In a high school 0.25 students fail math, 0.15 fail chemistry, and 0.1 fail both math and chemistry. A student is chosen at random.

- 1. If the student failed chemistry, what is the probability that he or she also failed mathematics?
- 2. If the student failed mathematics, what is the probability that he also failed chemistry?
- 3. What is the probability that he failed mathematics or chemistry?

Exercise 7: (Cours)

Three machines A, B and C produce respectively 0.6, 0.3 and 0.1 of the total number of parts manufactured in a factory. The percentages of defective results for these machines are 0.02, 0.03, and 0.04, respectively. We choose a part at random and find that it is defective.

Calculate the probability that this part was produced by machine C.

Exercise 8:

We consider three urns U_1 , U_2 and U_3 . The first U_1 contains 9 white balls, 4 red and 2 black. The second contains 8 white balls, 5 red and 2 black. The third contains 6 white balls, 4 red and 5 black. One of three urns is chosen at random, then three balls are drawn simultaneously from this urn. 1. Calculate the probability of being: "1 white and 1 red and 1 black". 2. Suppose the balls drawn are 2 white and 1 red, calculate the probability that they come from urn U_1 . This time we choose a ball from U_1 , a ball from U_2 and a ball from U_3 . 3. Calculate the probability of being: "1 white and 1 red and 1 black".

Exercise 9:(*)

One bag contains 50 balls, including: 20 red balls and 30 black balls. On 15 red balls and 9 black balls, we mark "Won" and on the rest we mark "Lost". A ball is drawn at random. Calculate the probabilities of the following events using a weighted probability tree:

R: "The ball drawn is red." W: "The ball drawn is marked Won".

 $R \cap W$: "The drawn ball is red and marked Won".

 $\overline{R} \cap \overline{W}$: "The drawn ball is black and marked Lost".

Exercise 10:

An urn U_1 contains a_1 red balls and a_2 black balls, another urn U_2 contains b_1 red balls and b_2 black balls. We draw a ball from U_1 and put it in U_2 , we designate by E the event "the ball drawn from U_1 is red" and by F the event "the ball drawn from U_2 is red" and by \overline{E} and \overline{F} the opposite events.

- 1. Calculate the probabilities $\mathbb{P}(E)$, $\mathbb{P}(\overline{E})$, $\mathbb{P}(F|E)$, $\mathbb{P}(F|\overline{E})$.
- 2. Calculate the probabilities $\mathbb{P}(F)$, $\mathbb{P}(E|F)$, $\mathbb{P}(\overline{E}|F)$.

• •