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NOTATION ET TERMINOLOGIE

Rn
: L’ensemble des vecteurs avec n composants.

Rn
+ : L’orthant positif de l’espace Rn.

Rn×m
: L’espace vectoriel des matrices réelles de taille (n ×m)

Rn
++ : l’orthant strictement positif de l’espace Rn.

s.c : Sous les contraintes.

x∗ : La solution optimale du problème.

∅ : L’ensemble vide.

xt
: Le transposé du vecteur x de Rn.

(PM) : Programmation mathématique.

(PL) : Programmation linéaire.

(DL) : Le problème dual de Programmation linéaire.

K.K.T : Karush-Kuhn-Tucker.

∆x,∆y,∆s : les directions de Newton.

e : le vecteur de R, dont toutes les composantes sont égales à 1.

ψ(t) : Fonction noyau.

φ(υ) =

n∑
i=1

ψ(υi) :La fonction barrière logarithmique de type primal-dual.

1



INTRODUCTION PROBABILITY AND
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CHAPITRE 1

COMBINATORIAL ANALYSIS

1.1

EXEMPLE

How many ways to order 52 cards ?

Answer : 52.51.50.....1 = 52!

n hats, n people, how many ways to assign each person a hat ?

Answer : n!

n hats, k < n people, how many ways to assign each person a hat ?

n(n − 1)(n − 2)...(n − k + 1) = n!/(n − k)!
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probability and statistics

1.1.1 Arrangements

Définition 1.1.1 [3] Let E be a set with n elements, an arrangement of p of these objects is an

ordered sequence of p objects taken from these n objects.

There are two types of arrangements : with and without repetition.

Arrangement without repetition

We call an arrangement without repetition of p objects chosen from n objects any

ordered layout (disposition) of p objects taken from the n objects without repetitions.

The number of arrangements without repetition, noted An
p , is as follows :

Ap
n =

n!
(n − p)!

= n × (n − 1) × (n − 2) · · · × (n − p + 1),

where 1 ≤ p ≤ n.

In an arrangement without repetition, the p objects in the list are all distinct. This cor-

responds to a draw without replacement and with order.

Example How many three-letter words containing no more than one letter can be for-

med using the letters of the alphabet ?

A3
26 = 26!

(26−3)! = 26 × 25 × 24 = 15600mots.

Arrangement with repetition

We call an arrangement with repetition of p objects chosen from n objects any

ordered layout (disposition) of p objects taken from the n objects with repetitions.

The number of arrangements with repetition, noted np, is as follows :

np = n × n × n · · · × n,
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probability and statistics

where 1 ≤ p ≤ n.

In a non-repetition arrangement, the p objects in the list are not necessarily all distinct.

This corresponds to a draw with replacement and with order.

Example How many two-letter words can be made with the letters of the alphabet ?

262 = 26 × 26.

1.1.2 Permutations

Définition 1.1.2 [3] Let E a set of n objects. We call permutation of n distinct objects any

ordered sequence of n objects or any arrangement n to n of these objects.

Permutation without repetition

This is the special case of the arrangement without repetition of p objects among n

objects, when p = n.

The number of permutations of n objects is : n!

Example The number of ways to seat eight diners (guests) around a table is :

8! = 40320.

Permutation with repetition

In the case where there are k identical objects among the n objects, then

n!
k!
,

Example The number of possible words (with or without meaning) that can be formed

by permuting the 8 letters of the word "Quantity" is 8!
2! = 20160 words, we have 2 t in

"Quantity".

Considering the word "Swimming", the number of possible words is 8!
2!2! = 10080 words,
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because we have the i 2 times and the m 2 times.

1.1.3 Combinations

Combination without repetitions (without discounts)

Définition 1.1.3 [3] Given a set E of n objects. We call combinations of p objects any set of p

objects taken from the n objects without replacement (without discount).

The number of combinations of p objects among n and without replacement, is :

Cp
n =

n!
p!(n − p)!

where 1 ≤ p ≤ n.

Example 1 The random drawing of 5 cards from a deck of 32 cards (poker hand) is a

combination with p = 5 and n = 32. The number of possible drawings is : C5
32 = 32!

5!(32−5)! =

409696 possibilities.

Example 2 Forming a delegation of 2 students from a group of 20 is a combination with

p = 2 and n = 20. The number of possible delegations is C2
20 = 20!

2!(20−2)! = 190 possibilities.

Combination with repetitions (with discounts)

The number of combinations of p objects among n and with replacement (with

discount),is :

Cp
n+p−1 =

(n + p − 1)!
p!(n − 1)!

where 1 ≤ p ≤ n.

Example1 Let’s make up 3-letter words from a 5-letter alphabet with discount.

The number of words is C3
5+3−1 = C3

7 = 35.

There are 3 possible cases :

-C3
5 number of words of 3 different letters and without order ;
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-2C2
5 number of words with 2 different letters and one redundant letter ;

-C1
5 number of words with 3 identical letters ;

in total, we have C3
5 + 2C2

5 + C1
5 = C3

7 = 35 words.

Let E be a set with n elements. p-lists :We call a p-list of E any ordered sequence (the

order is important) of p elements taken from n elements of E. np : number of p-lists of E.

Arrangements : On appelle arrangement de p éléments, toute suite ordonnée (l ?ordre

est important) de p éléments distincts pris parmi n éléments de E. : number of arrange-

ments of p elements among n elements of E. Permutations : If p = n, the arrangements

of n elements among n elements will be called permutations of n elements.( A permu-

tation is a map from 1, 2,..., n to 1, 2,..., n. There are n ! permutations of n elements.) Pn

= Ap n = n ! : number of permutations of n elements. Combinations : A combination is

a p-element subset of n elements of E. Here, the order is not important and repetition

of elements is prohibited. : number of combinations of p elements among n elements

of E.
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CHAPITRE 2

PROBABILITY SPACES

2.1 Sample spaces and events

Définition 2.1.1 (Random Experiment :) An experiment whose outcome is uncertain before it

is performed is called a random experiment.

Définition 2.1.2 (Sample Space) The set of all possible outcomes of the given experiment is

called the sample space and is denoted by Ω, and an element of Ω by ω.

Examples

- Coin toss : Ω = {Heads,Tails} = {H,T}

- Roll of a die :Ω = {1, 2, 3, 4, 5, 6}

- Tossing of two coins : Ω = {(H,H), (T,H), (H,T), (T,T)}

- Coin is tossed until heads appear. What is Ω ? - Life expectancy of a random person.

Ω = [1, 120] years

Définition 2.1.3 (Events) An event, A, is a subset of the sample space.

8
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This means that event A is simply a collection of outcomes. Events are typically denoted

by upper case letters, usually from the beginning of the alphabet.

An event is said to have occurred if the outcome of the experiment belongs to it.

Examples

- sure event = sample space Ω (an event for sure to occur)

- impossible event = empty set ∅ (an event impossible to occur)

- Coin toss : Ω = {Heads,Tails}

E = {Heads} is the event that a head appears on the flip of a coin.

- Roll of a die : Ω = {1, 2, 3, 4, 5, 6}. Some possible events are

E1 = {1} (single outcome), E2 = {an even number shows up} = {2, 4, 6} (3 outcomes),

E3 = {the outcome is ≥ 3} = {3, 4, 5, 6}, E4 = {the outcome is ≤ 0} = ∅, (no outcome).

- Life expectancy. Ω = [1, 120].

E = [50, 120] is the event that a random person lives beyond 50 years.
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2.1.1 Language of Events

Typical Notation Language of Sets Language of Events

Ω Whole space Certain event

∅ Empty set Impossible event

A Subset of Ω Event that some outcome in A occurs

Ac Complement of A Event that no outcome in A occurs

A ∪ B Union Event that an outcome in A or B or both occurs

A ∩ B Intersection Event that an outcome in both A and B occurs

A ∩ B = ∅ Disjoint sets Mutually exclusive events

Définition 2.1.4 Events A and B are disjoint if their intersection is empty,

A ∩ B = ∅.

Events A1,A2, ...,An are mutually exclusive or pairwise disjoint if any two of these events are

disjoint, i.e.,

Ai ∩ A j = ∅ f or any i , j.

Définition 2.1.5 (sigma-algebra (σ-algebra) (σ-field)) A collection F of subsets of Ω is called

a sigma-algebra if it satisfies

(a) it includes the sample space : Ω ∈ F

(b) F is stable by countable union, i.e. if A1,A2, ... ∈ F , then ∪∞i=1Ai ∈ F

(c) F is stable by complement, if A ∈ F , then Ac
∈ F

10
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Examples - F = {Φ,Ω} is the smallest sigma-algebra (Degenerate sigma-algebra).

- If A ⊂ Ω, F = {Φ,A,Ac,Ω} is a σ-field

- P(Ω) is the richest sigma-algebra. This sigma-algebra is called a power set (is the set

whose elements are all the subsets of Ω).

- the Borel sigma-algebra, if Ω = R, and is denoted by BR

Définition 2.1.6 (Indicator function ) Indicator function of an event denoted by IA(ω) and

defined as

IA(ω) =


1, i f ω ∈ A

0, si ω < A

Définition 2.1.7 ( Partition of sample space) A partition of a set A is a set {A1,A2, ...,An}with

the following properties :

a. Ai ⊆ A, i = 1, 2, . . . ,n, which means that A is a set of subsets.

b. Ai ∩A j = ∅, for every i , j, i = 1, 2, . . . ,n ; j = 1, 2, . . . ,n, which means that the subsets are

mutually (or pairwise) disjoint ; that is, no two subsets have any element in common.

c. ∪n
i=1Ai = A, which means that the subsets are collectively exhaustive. That is, the subsets

together include all possible values of the set A.

Définition 2.1.8 (Probability and probability space) Given a σ-algebra F on a set Ω. A pro-

bability P is a function P : F −→ [0, 1] satisfying (s.t.)

(a) (Unit measure) The sample space has unit probability, P(Ω) = 1

(b) (Sigma-additivity) if A1,A2, ... ∈ F is a collection of disjoint members in F , then

P(∪∞i=1Ai) =

∞∑
i=1

P(Ai)

(P is said to be countably additive)

The triplet (Ω,F ,P) is called a probability space.

11
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Remarque For any event A,

P(A) =
The number o f outcomes in A
The number o f outcomes in Ω

Examples 1

Which of the following are Probability functions ?

(i) Ω = {1, 2, 3, . . .}, , F is σ - field on Ω. A function P defined on space (Ω,F ) as

P(i) =
1
2i

for i ∈ Ω

Solution

a)

P(Ω) =

∞∑
i=1

1
2i = 1

b)

P(A) ≥ 0 f orallA ∈ F

c)Let us define mutually exclusive events, Ai = i we can verify countable additivity.

P(∪∞i=1Ai) =

∞∑
i=1

P(Ai)

By a) ,b)and c) P is Probability function.

Examples 1

- Coin toss :Ω = {H,T}, F = {Φ,H,T,Ω}

P(Ω) = 1,P(∅) = 0,P(H) =
1
2
,P(T) =

1
2

- Roll of a die :Ω = {1, 2, 3, 4, 5, 6}.

The probability of obtaining the 1 is 1/6. The probability of obtaining the 2 is 1/6. In

fact, the probability of obtaining any particular integer from 1, 2, ...6, is 1/6.

I defined the events A = 5, 6, and B = 1, 3, 5. We can now see that P(A) = 2/6 and P(B)

12
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= 3/6.

Examples 2

Two fair dice are tossed. Find the probability of each of the following events :

a. The sum of the outcomes of the two dice is equal to 7.

b. The sum of the outcomes of the two dice is equal to 7 or 11.

c. The outcome of the second die is greater than the outcome of the first die.

d. Both dice come up with even numbers.

Solution

We first define the sample space of the experiment. If we let the pair (x, y) denote the

outcome ?first die comes up x and second die comes up y, ? where x, y ∈ {1, 2, 3, 4, 5, 6},

then Ω = {(1, 1), (1, 2), (1, 3), · · · , (6, 6)}. The total number of sample points is 36.

(a) Let A1 denote the event that the sum of the outcomes of the two dice is equal to

seven. Then A1 = (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1). Since the number of sample points

in the event is 6, we have that P(A1) = 6/36 = 1/6.

(b) Let B denote the event that the sum of the outcomes of the two dice is either seven

or eleven, and let A2 denote the event that the sum of the outcomes of the two dice

is eleven. Then, A2 = (5, 6), (6, 5) with 2 sample points. Thus, P(A2) = 2/36 = 1/18.

Since B is the union of A1 and A2, which are mutually exclusive events, we obtain

P(B) = P(A1 ∪ A2) = P(A1) + P(A2) = 1
6 + 1

18
2
9

(c) Let C denote the event that the outcome of the second die is greater than the outcome

of the first die. Then C = {(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6), (4, 5), (4, 6), (5, 6)}

with 15 sample points. Thus, P(C) = 15/36 = 5/12.

(d) Let D denote the event that both dice come up with even numbers. Then D =

(2, 2), (2, 4), (2, 6), (4, 2), (4, 4), (4, 6), (6, 2), (6, 4), (6, 6) with 9 sample points. Thus, P(D) =

9/36 = 1/4.

Proposition 2.1.1 1- P(∅) = 0.

2- P(Ac) = 1 − P(A).

3- if A1 ⊂ A2 then P(A1) 6 P(A2).

13
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4- P(A1 ∪ A2) = P(A1) + P(A2) − P(A1 ∩ A2).

5- P(∪i≥1Ai) ≤
∑

i≥1P(Ai).

Preuve. 1- By the same definition, P(Ω) = P(Ω∪ ∅) = P(Ω) +P(∅), because Ω and ∅ are

mutually exclusive. Therefore, P(∅) = 0.

2- Recall that events A and Ac are exhaustive, hence A∪Ac = Ω. Also, they are disjoint,

hence

P(A) + P(Ac) = P(A ∪ Ac) = P(Ω) = 1.

Solving this for P(Ac), we obtain a rule that perfectly agrees with the common sense,

P(Ac) = 1 − P(A).

3- If A1 ⊂ A2, then A2 can be written as the union of the disjoint subsets A1 and A2 −A1.

Therefore,

P(A2) = P(A1) + P(A2 − A1) ≥ P(A1).

4- A1∪A2 can be written as the disjoint union of A1−A2, A2−A1 and A1∩A2. Therefore,

P(A1 ∪ A2) = P(A1 − A2) + P(A2 − A1) + P(A1 ∩ A2)

= [P(A1) − P(A1 ∩ A2)] + [P(A2) − P(A1 ∩ A2)] + P(A1 ∩ A2)

= P(A1) + P(A2) − P(A1 ∩ A2).

Examples

Three tulip bulbs are planted in a window box. Find the probability that at least one

will flower if the probability that all will fail to flower is 1
8 .

Sometimes calculations are made easier by using complementary events.

Solution

Définition 2.1.9 f (.) is a function defined on R is a called as Borel function if inverse image

is a Borel set.

14
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2.2 Conditional Probability and independence

2.2.1 Conditional probability

Définition 2.2.1 If E and F are two events associated with the same sample space of a random

experiment, then the conditional probability of the event E under the condition that the event F

has occurred ( the conditional probability of E given F), written as P(E|F), is given by

P(E|F) =
P(E ∩ F)
P(F)

Examples

A bag contains eight red balls, four green balls, and eight yellow balls. A ball is drawn

at random from the bag, and it is not a red ball. What is the probability that it is a green

ball.

Solution

Let G denote the event that the selected ball is a green ball, and let R̄ denote the event

that it is not a red ball. Then, P(G) = 4/20 = 1/5, since there are 4 green balls out of a

total of 20 balls, and P(R̄) = 12/20 = 3/5, since there are 12 balls out of 20 that are not

red. Now,

P(G|R̄) =
P(G ∩ R̄)

P(R̄)

But if the ball is green and not red, it must be green. Thus, we obtain that G ∩ R̄ = G

and

P(G|R̄) =
P(G ∩ R̄)

P(R̄)
=

P(G)
P(R̄)

=
1/5
3/5

=
1
3

Properties

Let E and F be events associated with the sample space Ω of an experiment. Then :

(1) P(Ω|F) = P(F|F) = 1

(2) P(A ∪ B|F) = P(A|F) + P(B|F) − P(A ∩ B|F).

(3) P(EC
|F) = 1 − P(E|F)

(4) P(E ∩ F) = P(E|F)P(F) = P(F|E)P(E).

15
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(5) P(E|F) , P(F|E)

Examples

Show that

P(A ∪ B|F) = P(A|F) + P(B|F) − P(A ∩ B|F)

Solution

P(A ∪ B|F) =
P((A ∪ B) ∩ F)

P(F)
By definition of conditional prob.

=
P((A ∩ F) ∪ (B ∩ F))

P(F)
By Distributive law

=
P(A ∩ F) + P(B ∩ F) − P(A ∩ ∩B ∩ F)

P(F)
By Addition theorem on probability.

= P(A|F) + P(B|F) − P(A ∩ B|F)

By definition of conditional prob.

Examples

Probability that it rains today is 0.4 ; probability that it will rain tomorrow is 0.5,

probability that it will rain tomorrow and rains today is 0.3.

Given that it has rained today, what is the probability that it will rain tomorrow ?

Solution

Denote the events, say

A :" it rains today", P(A) = 0.4

B : "it will rain tomorrow", P(B) = 0.5, P(A ∩ B) = 0.3.

Required probability is

P(B|A) =
P(A ∩ B)
P(A)

= 0.75

Proposition 2.2.1 If {A1,A2, ...,An} form a partition of Ω. Let A be any event. Then

P(A) =

n∑
i=1

P(A ∩ Ai) =

n∑
i=1

P(Ai)P(A|Ai)

16
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Preuve. regarde chapter 1 (Basic Probability Concepts) As a special case, B and B̄ is

a partition of Ω, so :

P(A) = P(A ∩ B) + P(A ∩ B̄)

= P(B)P(A|B) + P(B̄)P(A|B̄) f oranyA,B.

2.2.2 Independent Events

Now we can give an intuitively very clear definition of independence.

Définition 2.2.2 Let E and F be two events associated with a sample space Ω. If the probability

of occurrence of one of them is not affected by the occurrence of the other, then we say that the

two events are independent. Thus, two events E and F will be independent, if

(a) P(F|E) = P(F).

(b) P(E|F) = P(E).

Using the multiplication theorem on probability, we have

P(E ∩ F) = P(E)P(F).

Example

There is a 0, 01 probability for a hard drive to crash. Therefore, it has two backups, each

having a 0, 02 probability to crash, and all three components are independent of each

other. The stored information is lost only in an unfortunate situation when all three

devices crash. What is the probability that the information is saved ?

Solution

Organize the data. Denote the events, say,

H :" hard drive crashes", B1 = "first backup crashe", B2 = "second backup crashes".

It is given that H, B1, and B2 are independent,

P(H) = 0.01, and PB1 = PB2 = 0.02.

17
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Applying rules for the complement and for the intersection of independent events,

P(saved) = 1 − P(lost) = 1 − PH ∩ B1 ∩ B2

= 1 − PHPB1PB2

= 1?(0.01)(0.02)(0.02) = 0.999996.

Théorème 2.2.1 If events A and B are independent so are (i) A and B̄ (ii) B and Ā (iii) Ā and

B̄ .

Preuve. (i) Consider

P(A ∩ B̄) = P(A) − P(A ∩ B)

Since A and B are independent

P(A ∩ B̄) = P(A) − P(A)P(B) = P(A)P(B̄)

So, A and B̄ are independent. Similarly we can prove (ii)

(iii) Consider

P(Ā ∩ B̄) = P( ¯A ∪ B) = 1 − P(A ∪ B)

= 1 − [P(A) + P(B) − P(A ∩ B)]

= [1 − P(A)][1 − P(B)]

= P(Ā)P(B̄)

So, Ā and B̄ are independent

Remarque 2.2.2 If A,B,C are three events

-They are pairwise independent if

P(A ∩ B) = P(A)P(B)

P(A ∩ C) = P(A)P(C)

P(B ∩ C) = P(B)P(C)

-They are completely independent (are said to be mutually independent) if

P(A ∩ B) = P(A)P(B)

P(A ∩ C) = P(A)P(C)

18
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P(B ∩ C) = P(B)P(C)

and P(A ∩ B ∩ C) = P(A)P(B)P(C)

Théorème 2.2.3 (Theorem of Total Probability) Let {A1,A2, ...,An} be a partition of the

sample space Ω. Let A be any event associated with Ω, then

P(A) =

∞∑
i=1

P(Ai)P(A|Ai)

Théorème 2.2.4 (Bayes’s Theorem) If {A1,A2, ...,An} are mutually exclusive and exhaustive

events associated with a sample space, and A is any event of non zero probability, then

P(Ai|A) =
P(Ai)P(A|Ai)∑
∞

i=1P(Ai)P(A|Ai)

Example

Three people X ,Y ,Z have been nominated for the Manager’s post. The chances for

getting elected for them are 0.4, 0.35 and 0.25 respectively. If X will be selected the

probability that he will introduce Bonus scheme is 0.6 the respective chances in respect

of Y and Z are 0.3 and 0.4 respectively. If it w known that Bonus scheme has been

introduced, what is the probability that X is selected as a Manager ?

Solution

see probability-theory.pdf+++++ P47
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CHAPITRE 3

RANDOM VARIABLES

Définition 3.0.3 A random variable X (r.v.) is a measurable function from a probability space

(Ω,F ,P) to the reals, i.e., it is a function

X : Ω −→ R

such that ∀B ∈ BR

X?1(B) ∈ F .

A random variable (r.v.) is defined as a function that associates a number to each element of

the outcome space. Hence, any X,

X : Ω −→ R

is a random variable.

Random variables are usually denoted by X, Y, Z, · · · .
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3.1 Discrete random variables

As before, suppose Ω is a sample space.

Définition 3.1.1 A Random Variable X is said to be discrete if it takes only the values of the

set {0, 1, 2, · · · }

Exemples 3.1.1 1. Tosssing 2 coins simultaneously

Ω = {HH,HT,TH,TT}

Let the random variable be getting number of heads then

X(Ω) = {0, 1, 2}

2. Sum of the two numbers on throwing 2 dice

X(Ω) = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

3.1.1 Discrete Probability Distributions

The probability distribution of a discrete random variable X lists the values and

their probabilities.

Value of X x1 x1 x1 · · · xk

Probability p1 p2 p3 · · · pK

where

0 ≤ pi ≤ 1andp1 + p2 + ∆∆∆ + pk = 1
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We have

PX(x) = P(X = x) = PX(X−1(x))

Note that the pre-image X−1(x) is the event {ω ∈ Ω : X(ω) = x}.

3.1.2 Cumulative Distribution Function (CDF) of a disc. r.v.

Définition 3.1.2 The cumulative distribution function F(x) of a discrete random variable X is

F(x) = P(X ≤ x) =
∑
P(X = x)

3.2 Expectation

The expectation of a RV X is a real number computed by

E[X] =
∑

k∈X(Ω)

kP(X = k).

if X is discrete and

E[X] =

∫
R

x f (x)dx.

if X is continuous. Intuitively, the expectation is the ?average value ? of the RV, more

precisely it is a weighted average of the values of the RV, where the weights are the

probabilities of the outcomes. The expectation is also called mean, expected value and

sometimes average.

Expected Value Rule for Functions of Random Variables

Let X be a random variable with PMF pX,and let 1(X) be a function of X. Then,the

expected value of the random variable 1(X) is given by

E[1(X)] =
∑
1(x)PX(x).

22



probability and statistics

3.3 Variance

The variance var(X) of a random variable X is defined by

var(X) = E[X2] − (E[X])2.

3.4 Continuous Random Variables

Définition 3.4.1 Random variable X is continuous if probability density function (pdf) f is

continuous at all but a finite number of points and possesses the following properties :

- f (x) ≥ 0, for all x,

-
∫ +∞

−∞
f (x)dx = 1.

We have P(a < X?b) =
∫ b

a
f (x)dx

The (cumulative) distribution function (cdf) for random variable X is

F(x) = P(X ≤ x) =

∫ x

−∞

f (t)dt,

and has properties

? limx−→−∞ F(x) = 0,

? limx−→+∞ F(x) = 1,

? if x1 < x2, then F(x1)?F(x2) ; that is, F is nondecreasing,

? P(a?X?b) = P(X?b)?P(X?a) = F(b)?F(a) =
∫ b

a
f (x)dx,

? F′(x) = f (x)
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CHAPITRE 4

IMPORTANT PROBABILITY

DISTRIBUTIONS

4.1 Discrete probability distributions

4.1.1 The uniform distribution

If all the outcomes have equal probability, i.e P1 = P2 = · · · = Pn = 1
n , then the

distribution is called a uniform distribution.
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4.1.2 The Bernoulli distribution

4.1.3 The Binomial distribution (or Repeated Bernoulli Trials)

4.1.4 The geometric distribution

4.1.5 The Poisson distribution

4.1.6 The Bernoulli distribution

4.2 Discrete probability distributions

25



CHAPITRE 5

CHARACTERISTIC FUNCTIONS

Définition 5.0.1 The characteristic function of a a random variable X is the function ϕx :

R −→ C defined by

ϕx(t) = E(eitX)
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CHAPITRE 6

LIMIT THEOREMS

6.1 Markov and Chebyshev Inequalities

Théorème 6.1.1 (Markov Inequality) If arandom variable X can only take nonnegative va-

lues,then

P(X ≥ a) ≤
E(X)

a

for all a > 0

Théorème 6.1.2 (Chebyshev Inequality) If X is arandom variable with mean µ and va-

riance σ2,then

P(|X − µ| ≥ c) ≤
σ2

C2

for all c > 0
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6.2 The Weak Law of Large Numbers

Théorème 6.2.1 (The Weak Law of Large Numbers) Let X1,X2,...be independent identi-

cally distributed random variables with mean µ. For every ε > 0, we have

P(|Mn − µ| ≥ ε) = P(|
X1 + X2 + · · · + Xn

n
− µ| ≥ ε) −→ 0

as n −→ ∞

6.3 Convergence in Probability

see : d973b10c2587781f86ca4f2aff49098f P 40

6.4 The Central Limit Theorem

see : d973b10c2587781f86ca4f2aff49098f
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CONCLUSION

Dans ce travail, on s’est intéressée à rèsoudre le probléme d’un programme linéaire

par la methode de trajectoire centrale basée sur les fonctions noyaux, où on a présenté

une nouvelle fonction noyau à terme barrière trigonométrique.

Nous avons analysé les versions à grande et petite mise à jour de l’algorithme primal-

dual .Ces résultats sont des contributions importantes pour améliorer la complexité

calculatoire du problème étudié.
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