Centre Universitaire de Mila

Institut de mathématiques et informatique

Département de l'informatique

Master 1 I2A Année : 2025/2026

Module : Algorithmique avancée et complexité

TD4

Exercice 1: algorithmes probabilistes

Etant donné un tableau T de n entiers tel que : \forall i, j : T[i] \neq T[j]. Soit E^k l'ensemble de combinaisons générées à partir de T tel que chaque combinaison c $(e_1, e_2, ..., e_k)$ est composée de k éléments de T $(e_1 \neq e_2 \neq e_3, ..., \neq e_k)$. On dit que la combinaison $c_d \in E^k$ est une combinaison dominée par un entier β ssi : $e_1 + e_2 + ... + e_{k-1} + e_k < \beta$. Soit D_{β}^k l'ensemble des combinaisons dominée par β dans E^k $(D_{\beta}^k \subset E^k)$ et $\Delta_{\beta} = |D_{\beta}^k| / |E^k|$.

- 1) Ecrire un algorithme (une fonction) probabiliste qui permet d'estimer la valeur de Δ_{β} pour un paramètre β donné.
- 2) Quel est le type de votre algorithme?
- 3) Donner l'ordre de grandeur de la complexité de votre algorithme ?
- 4) Il est claire que la valeur de Δ_{β} est liée à la valeur de β . Ecrire un algorithme probabiliste qui cherche la valeur de β qui rendre Δ_{β} le plus proche possible de 0.5 (pour une valeur de k donnée par l'utilisateur)

Exercice 2 (facultatif): Diviser pour régner

Soit P un ensemble de points dans un espace de deux dimensions (pour chaque $i \in P$, nous avons xi et yi). Notre objectif est de trouver les deux points les plus proches dans P. L'algorithme na \ddot{i} f qui teste toutes les possibilités pour trouver ces deux points a une complexité en $O(n^2)$.

Proposer un algorithme de type **diviser pour régner** qui trouve les deux points les plus proches dans P ? (La complexité de votre algorithme doit être meilleure que la complexité de l'algorithme naïf)