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Chapter 1

Notions of Logic

Logic is the basis of mathematical reasoning. To solve problems and prove results, we need clear

rules for working with assertions and their truth values. In this chapter, we learn what assertions

are, how to use quantifiers to express statements about sets, and how to combine assertions with

logical connectives such as “and,” “or,” “not,” “if. . . then,” and “if and only if.” We also study the

main methods of proof, including direct proof, proof by contradiction, proof by contrapositive,

proof by cases, counterexamples, and mathematical induction. These tools will help us build

precise arguments and understand mathematics more deeply.

1.1 Assertion and Truth Table

Definition 1

1. An assertion (sometimes called a proposition) in mathematics is a sentence P which is either true (denoted

as T or 1) or false (denoted as F or 0) but not true and false at the same time.

2. T,F are called truth values of the assertion P. These values are usually displayed in a table called a truth

table.

P T F

Truth table for P.

3. Assertions are usually denoted by capital letters such as P,Q,R...

Example 2

1. P: “The sum of two even integers is an even integer.” This assertion is true T.

2. P: "
?

3 is a rational number". This assertion is false F, (since
?

3 cannot be expressed in the form m
n
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Notions of Logic

with m P Z,n P Z˚).

3. P: "7 is a prime number". This assertion is true T.

1.2 Quantifiers and Quantified assertions

Quantifiers are symbols used to make assertions about elements of a set. There are two main

types: the universal quantifier, which refers to all elements of a set, and the existential quantifier,

which states that at least one element has a certain property. These quantifiers are important in

logic and in mathematical proofs.

A quantified assertion is a logical assertion that uses quantifiers to describe properties of

elements in a set. With them, we can say that something is true for every element (universal) or

that it is true for at least one element (existential).

1.2.1 Quantifiers

Definition 3 (Quantifiers)

1. Universal Quantifier: The symbol @ is called the universal quantifier. It is usually read as “for all" ,

or " for every" , or "for each".

2. Existential Quantifier: The symbol D is called the existential quantifier. It is usually read as “for

some,” “there exists,” or “for at least one.”

3. Uniqueness quantifier: The symbol D! is called the uniqueness quantifier (or unique existential

quantifier). It is usually read as “there exists exactly one,” “there exists a unique,” or “there exists one and

only one.”

Example 4 1. The assertion “The square of every real number is non-negative” can be expressed symboli-

cally as

@x P R : x2
ě 0.

2. The assertion “For every integer n, 2n is even” can be written as

@n P Z : 2n is even.
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Notions of Logic

3. The assertion “There exists an integer n such that n2 “ 9” can be expressed as

Dn P Z : n2
“ 9.

4. The assertion “There exists exactly one natural number x such that x´ 2 “ 4” can be expressed as

D!x PN : x´ 2 “ 4.

1.2.2 Quantified assertions

Definition 5 (Quantified Assertions)

1. An assertion that contains a universal or existential quantifier is called a quantified assertion.

2. Let S be a set and let Ppxq be a property defined for elements x P S. Then

(a) A universal assertion (or universally quantified assertion) has the form

@x P S : Ppxq.

It is true if and only if Ppxq holds for every x P S. It is false if there exists at least one x P S for which Ppxq

does not hold. Such an element is called a counterexample to the universal assertion.

(b) An existential assertion (or existentially quantified assertion) has the form

Dx P S : Ppxq.

It is true if there exists at least one x P S such that Ppxq holds. It is false if Ppxq is false for all x P S.

(c) A uniqueness assertion (or uniquely quantified assertion) has the form

D!x P S : Ppxq.

It is true if there exists exactly one element x P S such that Ppxq holds.

Remark 6 (Readings of Quantified Assertions)

1. Universal assertion

@x P S : Ppxq,

is read as “For all x P S, the property Ppxq holds”, “For every x, Ppxq holds” or “For each x, Ppxq holds”.

4



Notions of Logic

2. Existential assertion

Dx P S : Ppxq,

is read as“There exists an x P S such that Ppxq holds” , “For some x, Ppxq holds”.

3. Uniqueness assertion

D!x P S : Ppxq,

is read as “There exists exactly one x P S such that Ppxq holds” or "There exists a unique x P S such that

Ppxq holds”

Example 7 Consider the following quantified assertions

1.

@x P R : x2
ě 0.

This is a universal assertion, which states: “For all real numbers x, x2 is greater than or equal to zero.” This

assertion is true, since the square of any real number is non-negative.

2.

Dx P Z : x is even.

This is an existential assertion, which states: “There exists an integer x such that x is even.” This assertion

is true, as, for example, x “ 2 is an even integer.

3.

D!x P R : x2
“ 1.

This is a uniqueness assertion, which states: “There exists exactly one real number x such that x2 “ 1.”

This assertion is false, because the equation x2 “ 1 admits two real solutions, namely x “ 1 and x “ ´1,

not exactly one.

1.3 Logical connectives

Logical connectives are operations that combine assertions to form new ones. They can be divided

into two categories: unary connectives, which apply to a single assertion, and binary connectives,

which connect two assertions.

The first symbol is a unary connective. It takes one assertion and produces another; for instance,
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Notions of Logic

from P it creates the assertion “not pPq.” The remaining four symbols are binary connectives. Each

of them requires two assertions in order to produce a third, even if the two given assertions are

the same. The five standard connectives are: , ^, _, ùñ, andðñ.

• The symbol is called negation and is read as “not.”

• The symbol ^ is called conjunction and is read as “and.”

• The symbol _ is called disjunction and is read as “or.”

• The symbol ùñ is called implication and is read as “implies.”

• The symbolðñ is called double implication, or equivalence, and is read as “if and only if”

or “is equivalent to.”

1.3.1 Negation

Negation is a fundamental unary logical operator. It takes a single assertion and reverses its truth

value: if the assertion is true, its negation is false; if the assertion is false, its negation is true.

Definition 8 (Negation)

Let P be an assertion. The negation of P, denoted by notpPq or P̄, is the assertion that is true when P is

false, and false when P is true. The truth table for the negation of P is given below

P notpPq

T F

F T

Truth table for negation.

Example 9

1. If P: “6 is an odd number,” then the negation is notpPq: “6 is not an odd number,”

which is equivalent to saying “6 is even".

2. If P: “x is an element of the set S,” written as x P S, then the negation is notpPq: “x is not an element of

the set S,” written symbolically as x R S.

3. Negation of quantified assertions.

(a) Universal assertion. The negation of a universal assertion is obtained by replacing @ with D and

negating the property. Then

notp@x P S : Ppxqq
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Notions of Logic

is

Dx P S : not pPpxqq .

This means: “It is not true that every element of S satisfies Ppxq; instead, there exists at least one element

in S for which Ppxq does not hold.”

For example, the negation of

@x P R : x2
ą x,

is

Dx P R : notpx2
ą xq,

which can be rewritten as

Dx P R : x2
ď x.

(b) Existential assertion. The negation of an existential assertion is obtained by replacing D with @ and

negating the property. Then

notpDx P S : Ppxqq

is

@x P S : notpPpxqq.

This means: “It is not true that some element of S satisfies Ppxq; instead, every element of S fails to satisfy

Ppxq.”

For example the negation of

Dx P R : x2
“ 2

is

@x P R : notpx2
“ 2q,

which can be rewritten as

@x P R : x2
­“ 2.

Remark 10 To negate a quantified assertion:

• Replace @ with D (and vice versa).

• Negate the property Ppxq.

• For the uniqueness quantifier pD!q, express the negation as: “either no element satisfies Ppxq, or more

than one element satisfies it.”
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Notions of Logic

1.3.2 Conjunction

In the previous section, we introduced a connector that applies to a single assertion. We now turn

to a connector that applies to two assertions: the logical conjunction “and.” The conjunction is a

binary logical operator that links two assertions and expresses the idea that both are true at the

same time.

Definition 11 Let P and Q be two assertions. The conjunction of P and Q denoted by P ^Q “ read as P

and Q” is the assertion that is true only when both P and Q are true, and false in all other cases. The truth

table for ^ is shown below.

P Q P^Q

T T T

T F F

F T F

F F F

Truth table for Conjunction.

Example 12

1. Let P: “7 is a prime integer” and Q:“6 is an even integer”. The conjunction is

P^Q : “7 is a prime integer and 6 is an even integer.”

This assertion is true, since both P and Q are true.

2. Let P: “x ą 1” and Q: “x ă 3”. The conjunction is

P^Q : “x ą 1 and x ă 3.”

This means that x is greater than 1 and x less than 3. Then P^Q :" x is in the open interval s1, 3r".

3. Let the assertions be P: “k is a multiple of 2” and Q: “k is a multiple of 3.” Then the conjunction P^Q

is:“k is a multiple of 2 and k is a multiple of 3,” which is equivalent to saying “k is a multiple of 6.”

Remark 13 (Truth Table Size)

The number of rows in a truth table depends on the number of component assertions:

(a) For a compound assertion with one component (a single assertion), the truth table contains 2 possibilities:

T or F.
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Notions of Logic

(b) For a compound assertion with two components (two assertions), the truth table contains 22 “ 4

possibilities.

(c) In general, for a compound assertion with n components (i.e., n assertions), the truth table contains 2n

possibilities.

1.3.3 Disjunction

We now introduce the counterpart of conjunction, namely the logical disjunction “or.” Disjunction

is a binary logical operator that links two assertions and expresses the idea that at least one of

them is true.

Definition 14 (Disjunction) Let P and Q be two assertions. The disjunction of P and Q, denoted by

P_Q "read as P or Q”, is the assertion that is true whenever at least one of P or Q is true, and false only

when both P and Q are false. The truth table of the operator _ is therefore given as follows

P Q P_Q

T T T

T F T

F T T

F F F

Truth table for Disjunction.

Example 15

1. The assertion “π ě 2 or e ě 1” is true, since both inequalities are satisfied.

2. Let P: “x ă 2” and Q: “x ą 10.”Then the disjunction P_Q is equivalent to “x P s´8, 2rYs10,`8r.”

3. Let P: “n is a multiple of 3 less than 10” and Q: “n is an even number less than 10.” Then the assertion

P_Q corresponds to the set t0, 2, 3, 4, 6, 8, 9u.

4. Let P: “
?

2 is a rational number” and Q: “2 is an odd number,” then the disjunction P _ Q can be

expressed as “
?

2 is rational or 2 is odd.”

5. Let P: “x is an element of the set S1” and Q: “x is an element of the set S2,” then P_Q is equivalent to

“x P S1 Y S2” (the union of S1 and S2).

6. The assertion “2 ď 2” means “2 is less than 2 or 2 equals 2.” It is true because 2 “ 2.
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Notions of Logic

1.3.4 Logical Implication

Logical implication is a derived logical operator, constructed from the fundamental operators

“not” and “or”. It is the foundation of most mathematical reasoning.

Definition 16 (Logical Implication) Let P and Q be two assertions.

1. The implication of Q by P, denoted pP ùñ Qq (read as “P implies Q”), is the assertion that is false only

when P is true and Q is false. In all other cases, the implication is true. The truth table of logical implication

is
P Q P ùñ Q

T T T

T F F

F T T

F F T

Truth table for Implication.

2. The symbol ùñ is called the implication arrow and represents the direction of the logical implication.

3. The logical implication can be expressed using the operators "not" and "or"

notpPq _Q.

4. P is called the hypothesis, and Q is called the conclusion (or consequence).

5. The assertion pQ ùñ Pq is called the converse of pP ùñ Qq.

6. The assertion pnotpQq ùñ notpPqq is called the contrapositive of pP ùñ Qq. The contrapositive always

has the same truth value as the original implication.

Example 17

1. Let P: “n is divisible by 4,” and Q: “n is even.”. Then

(a) Implication pP ùñ Qq: “If n is divisible by 4, then n is even.” is True.

(b) Converse pQ ùñ Pq: “If n is even, then n is divisible by 4.” is not always true.

(c) Contrapositive pnotpQq ùñ notpPqq:“If n is not even, then n is not divisible by 4.” is true.

2. Let P: “x ą 5,” and Q: “x ą 0.” Then

(a) Implication pP ùñ Qq: “If x ą 5, then x ą 0.” is true.

(b) Converse pQ ùñ Pq: “If x ą 0, then x ą 5.” is not always true.

(c) Contrapositive pnotpQq ùñ notpPqq: “If x ď 0, then x ď 5.” is true

10
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3. The assertion " if x ď 1 then x2 ď 1" (is false, for example, if x “ ´2, then x ď 1 is true, but x2 “ 4,

which is not less than or equal to 1) can be written as the implication

x ď 1 ùñ x2
ď 1.

The converse is

x2
ď 1 ùñ x ď 1.

The Contrapositive is

not
`

x2
ď 1

˘

ùñ not px ď 1q

this is equivalent to

x2
ą 1 ùñ x ą 1.

This means, if the square of x is greater than 1, then x is greater than 1.

4. Let x, y be two real numbers, then the contrapositive of the implication

xy “ 0 ùñ x “ 0_ y “ 0,

is

not px “ 0_ y “ 0q ùñ notpxy “ 0q,

which simplifies to

x ­“ 0^ y ­“ 0 ùñ xy ­“ 0.

1.3.5 Logical Equivalence

The logical equivalence connector, denoted ðñ, links two assertions and indicates that they are

either both true or both false. In other words, in every possible situation, the two assertions have

the same truth value.

Definition 18 (Logical Equivalence or double implication)

1. Two assertions P and Q are said to be logically equivalent if they have the same truth value in all cases,

that is, their truth tables are identical.

2. The logical equivalence of P and Q is denoted by P ðñ Q. This relation can be expressed as a combination

of two implications pP ùñ Qq and pQ ùñ Pq, which is known as a double implication.
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3. The assertions P ðñ Q is true if P and Q are both true or both are false. Otherwise, it is false.

The truth table forðñ is shown below.

P Q P ðñ Q

T T T

T F F

F T F

F F T

Truth table for equivalence.

Remark 19 The assertion P ðñ Q can be expressed in several equivalent ways:

• P is equivalent to Q.

• P implies Q and Q implies P.

• P is true if and only if Q is true.

• P is true iff Q is true (where “iff” stands for “if and only if”).

• For P to be true, it is necessary and sufficient that Q is true.

• P is a necessary and sufficient condition (NSC) for Q.

Example 20

1. For two real numbers x and y, the equivalence

x ¨ y “ 0 ðñ x “ 0_ y “ 0,

is true.

2. For two real numbers x and y, the equivalence

x ¨ y “ 0 ðñ x “ 0^ y “ 0,

is false.

3. Let x P R. The assertion “x P r0, 1s” is not equivalent to “x P R`”. Indeed, the direct implication

x P r0, 1s ùñ x P R`,

12
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is true, but the converse implication

x P R` ùñ x P r0, 1s,

is false.

4. Let x P R. The assertion

x2
“ 1 ô x “ `1_ x “ ´1,

is true, because both implications hold.

Proposition 21 (Basic Logical Laws)

Let P, Q, and R be three assertions, then the following equivalences hold:

1. The double negation

notpnotpPqq ðñ P.

2. Commutativity of Conjunction and Disjunction

P^Q ðñ Q^ P,P_Q ðñ Q_ P.

3. Associativity of Conjunction and Disjunction

pP^Qq ^ R ðñ P^ pQ^ Rq

pP_Qq _ R ðñ P_ pQ_ Rq .

4. Distributivity of Conjunction over Disjunction and vice versa

P^ pQ_ Rq ðñ pP^Qq _ pP^ Rq

P_ pQ^ Rq ðñ pP_Qq ^ pP_ Rq .

5. The contrapositive law

pP ùñ Qq ðñ pnotpQq ùñ notpPqq .

6. De Morgan’s Laws: The negation of conjunction and disjunction (negation is distributive over

conjunction and disjunction)

pP^Qq ðñ P_Q , pP_Qq ðñ P^Q.

13
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Proof. Verify these equivalences by constructing truth tables for each law.

Conclusion 22 The table below summarizes the truth values of the main logical connectors introduced so

far. True (resp. False) is represented by T (resp. F):

P Q P̄ P^Q P_Q P ùñ Q P ðñ Q

T T F T T T T

T F F F T F F

F T T F T T F

F F T F F T T

1.4 Methods of Proof

Mathematical proof methods are formal processes used to demonstrate truths or establish conclu-

sions based on axioms, theorems, and logical rules. There are several commonly used methods of

proof, including: Direct Proof, Proof by Contradiction, Proof by Contrapositive, Proof by Cases,

Proof by Counterexample and Mathematical induction.

Definition 23 (Definition of a proof)

A proof is a sequence of logical steps that leads from given or known assertions (called assumptions) to a

final assertion (called the conclusion), where each step follows by a valid logical implication.

1.4.1 Direct Proof

The direct method is a proof technique in which one starts from the given hypotheses and proceeds

step by step to reach a conclusion through a sequence of logical implications.

Definition 24 Direct Proof (Principle). Let P and Q be two assertions. To prove the implication

pP ùñ Qq directly, we assume that P is true and then show, through a sequence of logical implications that

Q must also be true. The proof begins with "Assume P is true" and concludes with "Therefore, Q is true".

Example 25

1. Assertion: If r and s are rational numbers, then r` s is rational. Formally, this can be written as

r, s P Q ùñ r` s P Q.
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Solution:

Assume that r and s are rational. By definition, r “ a
b and s “ c

d for some integers a, b, c, d with b ‰ 0 and

d ‰ 0. Then

r` s “
a
b
`

c
d
“

ad` bc
bd

.

Since ad` bc and bd are integers, r` s is a quotient of integers and therefore rational (r` s P Q).

2. Assertion: Let x be an integer. If x is odd, then x` 1 is even. This can be written as

x P Z : x is odd ùñ x` 1 is even.

Solution:

Assume x is odd. Then x “ 2k` 1 for some integer k. It follows that

x` 1 “ 2k` 1` 1 “ 2pk` 1q.

Since k` 1 is an integer, x` 1 is even.

3. Assertion: For all integers m and n, if m and n are odd, then m` n is even. This can be written as

@m,n P Z : m is odd ^ n is odd ùñ m` n is even.

Solution:

Assume m and n are odd integers. Then m “ 2k1 ` 1 and n “ 2k2 ` 1 for integers k1, k2. Therefore

m` n “ p2k1 ` 1q ` p2k2 ` 1q “ 2pk1 ` k2 ` 1q “ 2k3,

where k3 “ k1 ` k2 ` 1 P Z. Hence, m` n is even.

4. Assertion: If n is an odd integer, then n2 is odd. This can be written as

n P Z : n is odd ùñ n2 is odd.

Solution:

Assume n is odd. Then n “ 2k` 1 for some integer k. It follows that

n2
“ p2k` 1q2 “ 4k2

` 4k` 1 “ 2p2k2
` 2kq ` 1 “ 2m` 1,

15
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where m “ 2k2 ` 2k P Z. Therefore, n2 is odd.

1.4.2 Proof by Contrapositive

Contraposition, or proof by contrapositive, is a method of proof that involves establishing the

implication “if nonpQq, then nonpPq” from the original implication “if P, then Q.” The assertion “if

nonpQq, then nonpPq” is called the contrapositive of “if P, then Q.” This method is particularly useful

when proving P ùñ Q directly is difficult, but proving its contrapositive pnotpQq ùñ notpPqq is

simpler. It relies on the logical equivalence between an implication and its contrapositive.

Definition 26 Proof by Contrapositive (Principle). Proof by contrapositive is based on the fact that

any implication is logically equivalent to its contrapositive. For any two assertions P and Q

pP ùñ Qq ðñ pnotpQq ùñ notpPqq.

Instead of proving pP ùñ Qq directly, we prove its contrapositive pnotpQq ùñ notpPqq. This involves

assuming notpQq is true and deducing that notpPq must also be true.

Example 27 Let n P Z be an integer. Provide a proof by contrapositive of the assertion.“If n2 is an odd

integer, then n is odd.” Formally, this can be written as

n P Z : n2 is odd ùñ n is odd.

Solution: The contrapositive of this assertion is “If n is not odd, then n2 is not odd.” In other words, "if n

is even, then n2 must also be even". Formally

n P Z : n is even ùñ n2 is even .

Assume n is even. Then there exists an integer k such that

n “ 2k.

Squaring n gives

n2
“ p2kq2 “ 4k2

“ 2p2k2
q “ 2k1, k1 “ 2k2

P Z,

16
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so n2 is even. Since the contrapositive is true, the original assertion is also true: if n2 is odd, then n must

be odd.

1.4.3 Proof by Contradiction

Proof by contradiction, is a method of proof in which we assume that the assertion we want

to prove is false, and then show that this assumption leads to a logical contradiction. Once a

contradiction is reached, the assumption is rejected, and the original assertion is concluded to be

true. This method has some similarities with proof by contrapositive, but it is not quite the same.

In contrapositive proofs, we reformulate the assertion into an equivalent one; in contradiction

proofs, we assume the opposite of the desired result and demonstrate that such an assumption is

impossible.

Definition 28 Proof by Contradiction (Principle). To prove that an assertion P is true, we assume the

opposite (This means that P is false) and then show that this assumption leads to a contradiction or a false

result. Since the assumption cannot hold, it follows that P must be true.

Example 29

1. Prove that
?

2 is irrational. The classical proof of the irrationality of
?

2 is by contradiction.

Solution. Assume, for contradiction, that
?

2 is rational. Then there exist integers m,n PN, with n ­“ 0

and m and n coprime (i.e., having no common divisor other than 1), such that

?
2 “

m
n
.

Squaring both sides gives

m2
“ 2n2,

so m2 is even. By the previous example on contrapositive, this implies that m is even. Hence, there exists

k PN such that m “ 2k. Substituting, we obtain

n2
“ 2k2,

which shows that n2 is even, and therefore n is even. Thus, both m and n are divisible by 2, contradicting

the assumption that they are coprime. Therefore,
?

2 cannot be rational. Hence,
?

2 is irrational. This

completes the proof by contradiction.
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2. Let a, b ą 0 be two positive real numbers. Show that if

a
1` b

“
b

1` a
,

then

a “ b.

Solution. Suppose, for contradiction, that

a
1` b

“
b

1` a

and

a ­“ b.

Then
a

1` b
“

b
1` a

ùñ apa` 1q “ bpb` 1q,

so

a2
` a “ b2

` b ùñ a2
´ b2

“ b´ a,

which factors as

pa´ bqpa` bq “ ´pa´ bq.

Since a ­“ b, we can divide both sides by a´ b,

a` b “ ´1.

But this is impossible, since a and b are positive real numbers and their sum must also be positive. This

contradiction shows that our assumption was false. Therefore, it must be the case that a “ b.

Conclusion. If
a

1` b
“

b
1` a

, then necessarily a “ b.

1.4.4 Proof by Cases

When proving an assertion, it is sometimes easier to divide the argument into particular subcases.

If these subcases together cover all possible situations, then the assertion is proved in complete

generality. This approach is called proof by cases. In this method, the assertion to be proved is

18
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broken down into a finite number of cases (sub-assertions), each established independently.

Definition 30 Proof by Cases (Principle). To prove pP ùñ Qq, we divide the assumption P into several

possible cases and show that the implication holds for each case. If P can be expressed as

P ðñ A1 _ A2 _ ¨ ¨ ¨ _ An,

where each Ai represents a possible case. To prove pP ùñ Qq, it suffices to show (the individual implications)

A1 ùñ Q,A2 ùñ Q, . . . ,An ùñ Q.

If all these implications are true, it follows that

A1 _ A2 _ ¨ ¨ ¨ _ An ùñ Q,

and therefore

P ùñ Q.

Example 31

1. Prove the assertion: if n is an integer, then 3n2 ` n` 14 is even. Formally, this can be written as

n P Z ùñ 3n2
` n` 14 is even.

Solution: Let n P Z be an integer number. We will consider two cases: when n is even and when n is odd.

Case 1. Suppose n is even. Then there exists k P Z such that n “ 2k, we get

3n2
` n` 14 “ 3p2kq2 ` 2k` 14 “ 12k2

` 2k` 14 “ 2p6k2
` k` 7q.

Setting

m1 “ 6k2
` k` 7 P Z,

we obtain

3n2
` n` 14 “ 2m1.

Hence 3n2 ` n` 14 is even when n is even.
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Case 2. Suppose n is odd. Then there exists k P Z such that n “ 2k` 1, we get

3n2
` n` 14 “ 3p2k` 1q2 ` p2k` 1q ` 14 “ 12k2

` 14k` 18 “ 2p6k2
` 7k` 9q.

Setting

m2 “ 6k2
` 7k` 9 P Z,

we have

3n2
` n` 14 “ 2m2.

Thus the expression is also even when n is odd. Since in both cases 3n2 ` n` 14 is even, it follows that if n

is an integer, then 3n2 ` n` 14 is even.

2. Prove the following assertion: If x is a real number, then |x` 3|´x ą 2. Formally, this can be written as

x P R ùñ |x` 3| ´ x ą 2.

Solution: Let x P R. Since the absolute value depends on the sign of x` 3, we have

|x` 3| “

$

’

&

’

%

x` 3, if x ě ´3

´x´ 3, if x ă ´3.

Then, we consider two cases:

Case 1: if x ě ´3, then |x` 3| ´ x “ 3 ą 2, so the inequality holds.

Case 2: if x ă ´3, then |x` 3| ´ x “ ´2x´ 3. Thus

´2x´ 3 ą 2.3´ 3 “ 3 ą 2.

Again, the inequality holds. Since the assertion is true in both cases, we conclude that for all real numbers

x,

|x` 3| ´ x ą 2.
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1.4.5 Proof by Counterexample

A counterexample is a specific and concrete example that demonstrates the falsity of a general

claim, statement, conjecture, rule, or law. To disprove an assertion, it is sufficient to find just one

counterexample showing that the claim does not always hold. In many cases, constructing an

appropriate counterexample can be as challenging as proving that an assertion is true.

Definition 32 Proof by Counterexample (Principle). Let Ppxq be a property defined for elements x in

a set S. To show that the universal assertion

@x P S : Ppxq,

is false, it is sufficient to find an element x P S for which Ppxq does not hold. Such an element is called a

counterexample to the assertion.

Example 33 1. Show that the following assertion is false: “Every positive integer is the sum of three

squares.” Formally

@x PN, Da, b, c PN : x “ a2
` b2

` c2.

The property is

Ppxq : Da, b, c PN : x “ a2
` b2

` c2.

For example,

14 “ 12
` 22

` 32.

So Pp14q is true.

Solution. A counterexample is the integer 7. The possible squares less than or equal to 7 are 0, 12 “ 1, 22 “

4. However, for any a, b, c P t0, 1, 2u, the sum a2 ` b2 ` c2 cannot equal 7 (since 0 ` 1 ` 4 “ 5, not 7).

Thus Pp7q is false, so 7 is a counterexample. Therefore, the universal assertion is false.

2. Consider the assertion "For all real numbers x, we have x2 ą x." Formally

@x P R : x2
ą x.

Find a counterexample to show that this assertion is false.

Solution. Consider x “ 1
2 . Then

x2
“

ˆ

1
2

˙2

“
1
4
ă

1
2
“ x.

21



Notions of Logic

Since we have found a real number x for which x2 ă x, the universal assertion is false.

1.4.6 Proof by Mathematical Induction

)ÿ+L Proof by mathematical induction is a technique used to establish the truth of assertions or

propositions for all natural numbers or for integers within a specified range. The process consists

of two main steps: the base case and the inductive step.

Definition 34 (The Principle of Induction) Let n0 be a positive integer (n0 P N), and let Ppnq be an

assertion about n for each positive integer n ě n0. To prove that Ppnq is true for all n ě n0, the method of

mathematical induction consists of two steps:

(a) Base case: Verify that Ppn0q is true.

(b) Inductive step: Assume that Ppkq is true for some positive integer k ě n0 (this assumption is called

the induction hypothesis). Then prove that Ppk` 1q is also true.

If both steps are verified, it follows by induction that Ppnq holds for all integers n ě n0.

Example 35 Prove by induction that for all integers n ě 1, the sum of the first n integers is given by the

formula

1` 2` ...` n “
npn` 1q

2
.

Solution: Let Ppnq be the assertion

1` 2` ...` n “
npn` 1q

2
.

We will prove by induction that Ppnq holds for all n ě 1.

Base case: If n “ 1, then the assertion becomes 1 “ 1p1`1q
2 . The base case Pp1q holds.

Induction Hypothesis: Assume Ppkq is true for some integer k ě 1, i.e.

1` 2` ¨ ¨ ¨ ` k “
kpk` 1q

2
.

Inductive Step: We need to prove that Ppk` 1q holds, i.e.

1` 2` ¨ ¨ ¨ ` k` pk` 1q “
pk` 1qpk` 2q

2
.
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Using the induction hypothesis,

1` 2` ¨ ¨ ¨ ` k` pk` 1q “
kpk` 1q

2
` pk` 1q.

Simplify
kpk` 1q

2
` pk` 1q “

kpk` 1q ` 2pk` 1q
2

“
pk` 1qpk` 2q

2
.

This is exactly the desired formula. Therefore, Ppk` 1q is true.

Conclusion: By the Principle of Mathematical Induction, the assertion Ppnq holds for all integers n ě 1.
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Conclusion of the Chapter

In this chapter, we introduced the foundations of mathematical logic and explored sev-

eral methods of proof. We began by studying logical assertions, connectives, truth tables, and

fundamental logical laws, which provide the essential tools for rigorous reasoning.

We then examined key proof techniques, including direct proof, proof by contrapositive, proof

by contradiction, proof by cases, proof by counterexample, and mathematical induction. Each

method serves a specific purpose: direct proofs establish implications step by step; contrapositives

and contradictions leverage logical equivalence and refutation; counterexamples demonstrate the

limits of general statements; and induction allows us to prove assertions about infinite sets, such

as the natural numbers.

Together, these concepts form the core of mathematical reasoning. They ensure the validity of

results while fostering the rigor and clarity that are essential for advanced studies in mathematics

and computer science.
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