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Chapter 1

Notions of Logic

Logic is the basis of mathematical reasoning. To solve problems and prove results, we need clear
rules for working with assertions and their truth values. In this chapter, we learn what assertions
are, how to use quantifiers to express statements about sets, and how to combine assertions with

s

logical connectives such as “and,” “or,” “not,” “if. .. then,” and “if and only if.” We also study the
main methods of proof, including direct proof, proof by contradiction, proof by contrapositive,
proof by cases, counterexamples, and mathematical induction. These tools will help us build

precise arguments and understand mathematics more deeply.

1.1 Assertion and Truth Table

Definition 1

1. An assertion (sometimes called a proposition) in mathematics is a sentence P which is either true (denoted
as T or 1) or false (denoted as F or 0) but not true and false at the same time.

2. T, F are called truth values of the assertion P. These values are usually displayed in a table called a truth

table.

P|T|F

Truth table for P.

3. Assertions are usually denoted by capital letters such as P, Q, R...

Example 2
1. P: “The sum of two even integers is an even integer.” This assertion is true T.

2. P: "+/3is a rational number”. This assertion is false F, (since /3 cannot be expressed in the form
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Nortions oF Logic

withme Z,n € Z*).

3. P: "7 is a prime number"”. This assertion is true T.

1.2 Quantifiers and Quantified assertions

Quantifiers are symbols used to make assertions about elements of a set. There are two main
types: the universal quantifier, which refers to all elements of a set, and the existential quantifier,
which states that at least one element has a certain property. These quantifiers are important in

logic and in mathematical proofs.

A quantified assertion is a logical assertion that uses quantifiers to describe properties of
elements in a set. With them, we can say that something is true for every element (universal) or

that it is true for at least one element (existential).

1.2.1 Quantifiers

Definition 3 (Quantifiers)

1. Universal Quantifier: The symbol Y is called the universal quantifier. It is usually read as “for all” ,
or " for every” , or "for each”.

2. Existential Quantifier: The symbol 3 is called the existential quantifier. It is usually read as “for
some,” “there exists,” or “for at least one.”

3. Uniqueness quantifier: The symbol 3! is called the uniqueness quantifier (or unique existential

s

quantifier). It is usually read as “there exists exactly one,” “there exists a unique,” or “there exists one and

only one.”

Example 4 1. The assertion “The square of every real number is non-negative” can be expressed symboli-
cally as

VxeR:x%>0.

2. The assertion “For every integer n, 2n is even” can be written as

Vne Z :2nis even.
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3. The assertion “There exists an integer n such that n*> = 9” can be expressed as

meZ:n*=9.

4. The assertion “There exists exactly one natural number x such that x — 2 = 4" can be expressed as

dxeN:x -2 = 4.

1.2.2 Quantified assertions

Definition 5 (Quantified Assertions)
1. An assertion that contains a universal or existential quantifier is called a quantified assertion.
2. Let S be a set and let P(x) be a property defined for elements x € S. Then

(a) A universal assertion (or universally quantified assertion) has the form

Vx e S: P(x).

1t is true if and only if P(x) holds for every x € S. It is false if there exists at least one x € S for which P(x)
does not hold. Such an element is called a counterexample to the universal assertion.

(b) An existential assertion (or existentially quantified assertion) has the form

dx e S: P(x).

It is true if there exists at least one x € S such that P(x) holds. It is false if P(x) is false for all x € S.

(c) A uniqueness assertion (or uniquely quantified assertion) has the form

Jlx e S: P(x).

It is true if there exists exactly one element x € S such that P(x) holds.

Remark 6 (Readings of Quantified Assertions)
1. Universal assertion
Vx e S:P(x),
is read as “For all x € S, the property P(x) holds”, “For every x, P(x) holds” or “For each x, P(x) holds”.

4
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2. Existential assertion

dxe S: P(x),

is read as”There exists an x € S such that P(x) holds” , “For some x, P(x) holds”.
3. Uniqueness assertion

Jlx e S: P(x),

is read as “There exists exactly one x € S such that P(x) holds” or "There exists a unique x € S such that

P(x) holds”

Example 7 Consider the following quantified assertions
1.

Vxe R:x*>=>0.

This is a universal assertion, which states: “For all real numbers x, x* is greater than or equal to zero.” This
assertion is true, since the square of any real number is non-negative.

2.

dx € Z : x is even.

This is an existential assertion, which states: “There exists an integer x such that x is even.” This assertion
is true, as, for example, x = 2 is an even integer.
3.

JxeR:x* = 1.

4

This is a uniqueness assertion, which states: “There exists exactly one real number x such that x> = 1.
This assertion is false, because the equation x? = 1 admits two real solutions, namely x = 1 and x = -1,

not exactly one.

1.3 Logical connectives

Logical connectives are operations that combine assertions to form new ones. They can be divided
into two categories: unary connectives, which apply to a single assertion, and binary connectives,
which connect two assertions.

The first symbol is a unary connective. It takes one assertion and produces another; for instance,

5
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from P it creates the assertion “not (P).” The remaining four symbols are binary connectives. Each
of them requires two assertions in order to produce a third, even if the two given assertions are
the same. The five standard connectives are: , A, v, =, and <.

e The symbol is called negation and is read as “not.”

e The symbol A is called conjunction and is read as “and.”

e The symbol v is called disjunction and is read as “or.”

e The symbol = is called implication and is read as “implies.”

e The symbol <= is called double implication, or equivalence, and is read as “if and only if”

or “is equivalent to.”

1.3.1 Negation

Negation is a fundamental unary logical operator. It takes a single assertion and reverses its truth

value: if the assertion is true, its negation is false; if the assertion is false, its negation is true.

Definition 8 (Negation)
Let P be an assertion. The negation of P, denoted by not(P) or P, is the assertion that is true when P is

false, and false when P is true. The truth table for the negation of P is given below

P | not(P)
T F
F T

Truth table for negation.

Example 9
1. If P: “6 is an odd number,” then the negation is not(P): “6 is not an odd number,”
which is equivalent to saying “6 is even”.
2. If P: “x is an element of the set S,” written as x € S, then the negation is not(P): “x is not an element of
the set S,” written symbolically as x ¢ S.
3. Negation of quantified assertions.
(a) Universal assertion. The negation of a universal assertion is obtained by replacing ¥ with 3 and
negating the property. Then
not(Vx € S: P(x))

6
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18

dx € S : not (P(x)).

This means: “It is not true that every element of S satisfies P(x); instead, there exists at least one element
in S for which P(x) does not hold.”
For example, the negation of

VxeR:x*> x,

18

Jx € R : not(x* > x),

which can be rewritten as

IxeR:x* < x.

(b) Existential assertion. The negation of an existential assertion is obtained by replacing 3 with ¥ and
negating the property. Then
not(3x € S : P(x))

i

Vx € S : not(P(x)).

This means: “It is not true that some element of S satisfies P(x); instead, every element of S fails to satisfy
P(x).”
For example the negation of

xeR:x*2=2

is

Vx € R : not(x* = 2),

which can be rewritten as

VxeR:x%+2.

Remark 10 To negate a quantified assertion:

e Replace ¥ with 3 (and vice versa).

o Negate the property P(x).

e For the uniqueness quantifier (3!), express the negation as: “either no element satisfies P(x), or more

than one element satisfies it.”



Nortions oF Logic

1.3.2 Conjunction

In the previous section, we introduced a connector that applies to a single assertion. We now turn
to a connector that applies to two assertions: the logical conjunction “and.” The conjunction is a
binary logical operator that links two assertions and expresses the idea that both are true at the

same time.

Definition 11 Let P and Q be two assertions. The conjunction of P and Q denoted by P A Q “ read as P
and Q" is the assertion that is true only when both P and Q are true, and false in all other cases. The truth

table for A is shown below.

PAQ

R RES)

e e > B B I B N e
e T B O e o O

F

Truth table for Conjunction.

Example 12

1. Let P: “7 is a prime integer” and Q:”6 is an even integer”. The conjunction is

P A Q: 7 is a prime integer and 6 is an even integer.”

This assertion is true, since both P and Q are true.

2. Let P: “x > 1" and Q: “x < 3”. The conjunction is

PAQ:"x>1andx <3.”

”

This means that x is greater than 1 and x less than 3. Then P A Q :” x is in the open interval |1, 3|
3. Let the assertions be P: “k is a multiple of 2” and Q: “k is a multiple of 3.” Then the conjunction P A Q

is:“k is a multiple of 2 and k is a multiple of 3,” which is equivalent to saying “k is a multiple of 6.”

Remark 13 (Truth Table Size)
The number of rows in a truth table depends on the number of component assertions:

(a) For a compound assertion with one component (a single assertion), the truth table contains 2 possibilities:

Tor F.
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(b) For a compound assertion with two components (two assertions), the truth table contains 2° = 4
possibilities.
(c) In general, for a compound assertion with n components (i.e., n assertions), the truth table contains 2"

possibilities.

1.3.3 Disjunction

We now introduce the counterpart of conjunction, namely the logical disjunction “or.” Disjunction
is a binary logical operator that links two assertions and expresses the idea that at least one of

them is true.

Definition 14 (Disjunction) Let P and Q be two assertions. The disjunction of P and Q, denoted by
P v Q "read as P or Q”, is the assertion that is true whenever at least one of P or Q is true, and false only

when both P and Q are false. The truth table of the operator v is therefore given as follows

P Q|PvQO
T|T T
T|F T
F|T T
F|F F

Truth table for Disjunction.

Example 15

1. The assertion “m > 2 or e = 1" is true, since both inequalities are satisfied.

2. Let P: “x <2”and Q: “x > 10.”Then the disjunction P v Q is equivalent to “x € |—o0,2[ U |10, +0].”
3. Let P: “n is a multiple of 3 less than 10” and Q: “n is an even number less than 10.” Then the assertion
P v Q corresponds to the set {0,2,3,4,6,8,9}.

4. Let P: “~/2 is a rational number” and Q: 2 is an odd number,” then the disjunction P v Q can be
expressed as “ /2 is rational or 2 is odd.”

5. Let P: “x is an element of the set 51" and Q: “x is an element of the set S,,” then P v Q is equivalent to
“x € S1 U Sy” (the union of Sy and S»).

6. The assertion “2 < 2” means “2 is less than 2 or 2 equals 2.” It is true because 2 = 2.
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1.3.4 Logical Implication

Logical implication is a derived logical operator, constructed from the fundamental operators

“not” and “or”. It is the foundation of most mathematical reasoning.

Definition 16 (Logical Implication) Let P and Q be two assertions.
1. The implication of Q by P, denoted (P = Q) (read as “P implies Q”), is the assertion that is false only
when P is true and Q is false. In all other cases, the implication is true. The truth table of logical implication

is

P|Q|P=2Q
T|T| T
T|F F
FIT| T
F|F T

Truth table for Implication.

2. The symbol = is called the implication arrow and represents the direction of the logical implication.

3. The logical implication can be expressed using the operators "not” and "or”

not(P) v Q.

4. P is called the hypothesis, and Q is called the conclusion (or consequence).
5. The assertion (Q == P) is called the converse of (P = Q).
6. The assertion (not(Q) == not(P)) is called the contrapositive of (P = Q). The contrapositive always

has the same truth value as the original implication.

Example 17

1. Let P: “n is divisible by 4,” and Q: “n is even.”. Then

(a) Implication (P = Q): "“If n is divisible by 4, then n is even.” is True.

(b) Converse (Q = P): “If n is even, then n is divisible by 4.” is not always true.

(c) Contrapositive (not(Q) = not(P)):"If n is not even, then n is not divisible by 4.” is true.
2. Let P: “x > 5, and Q: “x > 0.” Then

(a) Implication (P = Q): “If x > 5, then x > 0.” is true.

(b) Converse (Q = P): “If x > 0, then x > 5.” is not always true.

(c) Contrapositive (not(Q) = not(P)): “If x < 0, then x < 5.” is true

10
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3. The assertion " if x < 1 then x* < 17 (is false, for example, if x = —2, then x < 1 is true, but x* = 4,

which is not less than or equal to 1) can be written as the implication

The converse is

The Contrapositive is

not (x¥* < 1) = not (x < 1)

this is equivalent to

2>1=— x> 1.

This means, if the square of x is greater than 1, then x is greater than 1.

4. Let x, y be two real numbers, then the contrapositive of the implication

xYy=0=x=0vy=0,

is

not (x =0 v y =0) = not(xy = 0),

which simplifies to
x+0Ay+0=xy+0.

1.3.5 Logical Equivalence

The logical equivalence connector, denoted <, links two assertions and indicates that they are
either both true or both false. In other words, in every possible situation, the two assertions have

the same truth value.

Definition 18 (Logical Equivalence or double implication)

1. Two assertions P and Q are said to be logically equivalent if they have the same truth value in all cases,
that is, their truth tables are identical.

2. The logical equivalence of P and Q is denoted by P <= Q. This relation can be expressed as a combination

of two implications (P = Q) and (Q = P), which is known as a double implication.

11
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3. The assertions P <= Q is true if P and Q are both true or both are false. Otherwise, it is false.

The truth table for <= is shown below.

P|Q|P=Q
T|T T
T|F F
F|T F
F|F T

Truth table for equivalence.

Remark 19 The assertion P <= Q can be expressed in several equivalent ways:
e P is equivalent to Q.

e P implies Q and Q implies P.

e P is true if and only if Q is true.

o Pis true iff Q is true (where “iff” stands for “if and only if”).

e For P to be true, it is necessary and sufficient that Q is true.

e P is a necessary and sufficient condition (NSC) for Q.

Example 20

1. For two real numbers x and vy, the equivalence

x-Yy=0=x=0vy=0,

is true.

2. For two real numbers x and y, the equivalence

x Yy=0=x=0Ay=0,

is false.

3. Let x € R. The assertion “x € [0,1]” is not equivalent to “x € R, ”. Indeed, the direct implication

xe[0,1] = xe Ry,

12
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is true, but the converse implication

xeR, = x€[0,1],

is false.
4. Let x € R. The assertion

Y¥=lex=+lvx=-1,

is true, because both implications hold.

Proposition 21 (Basic Logical Laws)
Let P, Q, and R be three assertions, then the following equivalences hold:
1. The double negation

not(not(P)) <= P.

2. Commutativity of Conjunction and Disjunction

PAQ«<—QAPPvQ<QVP

3. Associativity of Conjunction and Disjunction

(PAQ)AR < PA(QAR)

(PvQ)vR < Pv(QVR).

4. Distributivity of Conjunction over Disjunction and vice versa

PA(QVR) < (PAQ)v (PAR)

Pv(QAR) < (PvQ)A(PVR).

5. The contrapositive law

(P = Q) < (not(Q) = not(P)).

6. De Morgan’s Laws: The negation of conjunction and disjunction (negation is distributive over

conjunction and disjunction)

(PAQ)«<=DPvQ, (PvQ)«<DPnrQ.

13
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Proof. Verify these equivalences by constructing truth tables for each law. m

Conclusion 22 The table below summarizes the truth values of the main logical connectors introduced so

far. True (resp. False) is represented by T (resp. F):

PIQ|P|PAQ|PVQ|P=—=Q|P=Q
T|T|F T T T T
T|F|F F T F F
F|T|T F T T F
F|F|T F F T T

1.4 Methods of Proof

Mathematical proof methods are formal processes used to demonstrate truths or establish conclu-
sions based on axioms, theorems, and logical rules. There are several commonly used methods of
proof, including: Direct Proof, Proof by Contradiction, Proof by Contrapositive, Proof by Cases,

Proof by Counterexample and Mathematical induction.

Definition 23 (Definition of a proof)
A proof is a sequence of logical steps that leads from given or known assertions (called assumptions) to a

final assertion (called the conclusion), where each step follows by a valid logical implication.

1.4.1 Direct Proof

The direct method is a proof technique in which one starts from the given hypotheses and proceeds

step by step to reach a conclusion through a sequence of logical implications.

Definition 24 Direct Proof (Principle). Let P and Q be two assertions. To prove the implication
(P = Q) directly, we assume that P is true and then show, through a sequence of logical implications that

Q must also be true. The proof begins with "Assume P is true” and concludes with "Therefore, Q is true”.

Example 25

1. Assertion: If v and s are rational numbers, then r + s is rational. Formally, this can be written as

rseQ=r+seQ.

14
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Solution:

ssume that v and s are rational. efinition, v = % and s = < for some integers a, b, c,d wi # 0an
A that d tional. By d t ¢ and y teg b,c,d withb # 0 and

d #0. Then

r+s_g+£_ad+bc
b d bd

Since ad + bc and bd are integers, r + s is a quotient of integers and therefore rational (v 4+ s € Q).

2. Assertion: Let x be an integer. If x is odd, then x + 1 is even. This can be written as

xeZ:xisodd — x + 1 is even.

Solution:

Assume x is odd. Then x = 2k + 1 for some integer k. It follows that

x+1=2k+1+1=2(k+1).

Since k + 1 is an integer, x + 1 is even.

3. Assertion: For all integers m and n, if m and n are odd, then m + n is even. This can be written as

VmneZ :misodd A nisodd = m + n is even.

Solution:

Assume m and n are odd integers. Then m = 2ky + 1 and n = 2k, + 1 for integers ki, k,. Therefore

m+n= 2k +1)+ (2kp +1) = 2(k; + kp + 1) = 2ks,

where ks = k1 + ko, + 1 € Z. Hence, m + n is even.

4. Assertion: If n is an odd integer, then n? is odd. This can be written as

neZ:nisodd = n®isodd.

Solution:

Assume n is odd. Then n = 2k + 1 for some integer k. It follows that

=2k +1)? =4k + 4k +1=22k* +2k) + 1 =2m +1,

15
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where m = 2k* + 2k € Z. Therefore, n® is odd.

1.4.2 Proof by Contrapositive

Contraposition, or proof by contrapositive, is a method of proof that involves establishing the
implication “if non(Q), then non(P)” from the original implication “if P, then Q.” The assertion “if
non(Q), thennon(P)” is called the contrapositive of “if P, then Q.” This method is particularly useful
when proving P — Q directly is difficult, but proving its contrapositive (not(Q) = not(P)) is

simpler. It relies on the logical equivalence between an implication and its contrapositive.

Definition 26 Proof by Contrapositive (Principle). Proof by contrapositive is based on the fact that

any implication is logically equivalent to its contrapositive. For any two assertions P and Q

(P = Q) <= (not(Q) = not(P)).

Instead of proving (P — Q) directly, we prove its contrapositive (not(Q) — not(P)). This involves

assuming not(Q) is true and deducing that not(P) must also be true.

Example 27 Let n € Z be an integer. Provide a proof by contrapositive of the assertion.”If n? is an odd

integer, then n is odd.” Formally, this can be written as

ned :n*isodd = nisodd.

Solution: The contrapositive of this assertion is “If n is not odd, then n® is not odd.” In other words, "if n

is even, then n* must also be even”. Formally

neZ :niseven = n’is even .

Assume n is even. Then there exists an integer k such that

n = 2k.

Squaring n gives

n* = (2k)* = 4k* = 2(2k*) = 2K,k = 2k* € Z,

16
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so n? is even. Since the contrapositive is true, the original assertion is also true: if n* is odd, then n must

be odd.

1.4.3 Proof by Contradiction

Proof by contradiction, is a method of proof in which we assume that the assertion we want
to prove is false, and then show that this assumption leads to a logical contradiction. Once a
contradiction is reached, the assumption is rejected, and the original assertion is concluded to be
true. This method has some similarities with proof by contrapositive, but it is not quite the same.
In contrapositive proofs, we reformulate the assertion into an equivalent one; in contradiction
proofs, we assume the opposite of the desired result and demonstrate that such an assumption is

impossible.

Definition 28 Proof by Contradiction (Principle). To prove that an assertion P is true, we assume the
opposite (This means that P is false) and then show that this assumption leads to a contradiction or a false

result. Since the assumption cannot hold, it follows that P must be true.

Example 29
1. Prove that /2 is irrational. The classical proof of the irrationality of /2 is by contradiction.
Solution. Assume, for contradiction, that \/2 is rational. Then there exist integers m,n € IN, withn + 0

and m and n coprime (i.e., having no common divisor other than 1), such that
m
V2 = —.
n

Squaring both sides gives

so m? is even. By the previous example on contrapositive, this implies that m is even. Hence, there exists

k € IN such that m = 2k. Substituting, we obtain
n? = 2k?,

which shows that n? is even, and therefore n is even. Thus, both m and n are divisible by 2, contradicting
the assumption that they are coprime. Therefore, /2 cannot be rational. Hence, /2 is irrational. This

completes the proof by contradiction.

17
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2. Let a,b > 0 be two positive real numbers. Show that if

a b
1+b 1+4a
then
a=b.
Solution. Suppose, for contradiction, that
a b
1+b 1+a
and
a=+b.
Then
a b
155~ 152 —a(a+1)=bb+1),
S0

which factors as

(a—b)a+b)=—(a—D).

Since a 4 b, we can divide both sides by a — b,
a+b=-1.

But this is impossible, since a and b are positive real numbers and their sum must also be positive. This

contradiction shows that our assumption was false. Therefore, it must be the case that a = b.

b
Conclusion. If 7 j_ 5T then necessarily a = b.

1.4.4 Proof by Cases

When proving an assertion, it is sometimes easier to divide the argument into particular subcases.
If these subcases together cover all possible situations, then the assertion is proved in complete

generality. This approach is called proof by cases. In this method, the assertion to be proved is

18
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broken down into a finite number of cases (sub-assertions), each established independently.

Definition 30 Proof by Cases (Principle). To prove (P = Q), we divide the assumption P into several

possible cases and show that the implication holds for each case. If P can be expressed as

P<:A1VA2V"'VA,1,

where each A; represents a possible case. To prove (P = Q), it suffices to show (the individual implications)

A1:Q1A2:>Q/---1AHZ>Q'

If all these implications are true, it follows that

AivA v ---vA = Q,

and therefore

Example 31

1. Prove the assertion: if n is an integer, then 3n% + n + 14 is even. Formally, this can be written as

neZ = 3n*+n+ 14 is even.

Solution: Let n € Z be an integer number. We will consider two cases: when n is even and when n is odd.

Case 1. Suppose n is even. Then there exists k € Z such that n = 2k, we get

3n® +n+ 14 = 3(2k)* + 2k + 14 = 12k* + 2k + 14 = 2(6K* + k + 7).

Setting
m=6K+k+7¢€2Z,

we obtain

3n® +n+ 14 = 2my.

Hence 3n? + n + 14 is even when n is even.

19
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Case 2. Suppose n is odd. Then there exists k € Z such that n = 2k + 1, we get
3 +n+14 =302k +1)* + (2k + 1) + 14 = 12K* + 14k + 18 = 2(6k* + 7k +9).
Setting

my=6k>+7k+9¢2Z,

we have

3n% +n+ 14 = 2m,.

Thus the expression is also even when n is odd. Since in both cases 3n* + n + 14 is even, it follows that if n
is an integer, then 3n% + n + 14 is even.

2. Prove the following assertion: If x is a real number, then |x + 3| — x > 2. Formally, this can be written as

YeR = [x+3| —x>2

Solution: Let x € R. Since the absolute value depends on the sign of x + 3, we have

x4+ 3, ifx > -3
Ix + 3] =
—x —3,ifx < 3.
Then, we consider two cases:
Case 1: if x > —3, then |x + 3| — x = 3 > 2, so the inequality holds.
Case 2: if x < —3, then |x + 3| — x = —2x — 3. Thus

—2x—3>23-3=3>2.

Again, the inequality holds. Since the assertion is true in both cases, we conclude that for all real numbers
X,

lx + 3| —x > 2.
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1.4.5 Proof by Counterexample

A counterexample is a specific and concrete example that demonstrates the falsity of a general
claim, statement, conjecture, rule, or law. To disprove an assertion, it is sufficient to find just one
counterexample showing that the claim does not always hold. In many cases, constructing an

appropriate counterexample can be as challenging as proving that an assertion is true.
Definition 32 Proof by Counterexample (Principle). Let P(x) be a property defined for elements x in
a set S. To show that the universal assertion

VxeS: P(x),
is false, it is sufficient to find an element x € S for which P(x) does not hold. Such an element is called a
counterexample to the assertion.

Example 33 1. Show that the following assertion is false: “Every positive integer is the sum of three
squares.” Formally

VxeIN,Ja,b,ce N:x =a> + b* + .

The property is

P(x):3a,b,ce N:x =a* + b* + .

For example,

14 = 12 + 22 4+ 32,

So P(14) is true.

Solution. A counterexample is the integer 7. The possible squares less than or equal to 7 are 0,1 = 1,2% =
4. However, for any a,b,c € {0,1,2}, the sum a*> + b* + ¢* cannot equal 7 (since 0 + 1 + 4 = 5, not 7).
Thus P(7) is false, so 7 is a counterexample. Therefore, the universal assertion is false.

2. Consider the assertion "For all real numbers x, we have x* > x.” Formally
VxeR:x* > x.

Find a counterexample to show that this assertion is false.

e (Y _1_1_
S \2) 4 2 7

Solution. Consider x = 3. Then
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Since we have found a real number x for which x* < x, the universal assertion is false.

1.4.6 Proof by Mathematical Induction

)¥+L Proof by mathematical induction is a technique used to establish the truth of assertions or
propositions for all natural numbers or for integers within a specified range. The process consists

of two main steps: the base case and the inductive step.

Definition 34 (The Principle of Induction) Let n, be a positive integer (ny € IN), and let P(n) be an
assertion about n for each positive integer n = ny. To prove that P(n) is true for all n = ny, the method of
mathematical induction consists of two steps:

(a) Base case: Verify that P(ny) is true.

(b) Inductive step: Assume that P (k) is true for some positive integer k = ny (this assumption is called
the induction hypothesis). Then prove that P(k + 1) is also true.

If both steps are verified, it follows by induction that P (n) holds for all integers n > n,.

Example 35 Prove by induction that for all integers n > 1, the sum of the first n integers is given by the

formula
nn+1)

1+2+..4+n=
+2+ .41 5

Solution: Let P(n) be the assertion

1+2+..+n= M
2
We will prove by induction that P (n) holds for all n > 1.

Base case: If n = 1, then the assertion becomes 1 = @ The base case P (1) holds.

Induction Hypothesis: Assume P (k) is true for some integer k > 1, i.e.

k(k+1)

1424 ...+ k=
+2+ -+ 5

Inductive Step: We need to prove that P(k + 1) holds, i.e.

1+2+---+k+(k+1):w.
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Using the induction hypothesis,

1+2+~--+k+(k+1):k(k;1) + (k+1).
Simplify
k(k+1) k(k+1)+2(k+1) (k+1)(k+2)
> +(k+1)= > = > :

This is exactly the desired formula. Therefore, P(k + 1) is true.

Conclusion: By the Principle of Mathematical Induction, the assertion P(n) holds for all integers n > 1.
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Conclusion of the Chapter

In this chapter, we introduced the foundations of mathematical logic and explored sev-
eral methods of proof. We began by studying logical assertions, connectives, truth tables, and
fundamental logical laws, which provide the essential tools for rigorous reasoning.

We then examined key proof techniques, including direct proof, proof by contrapositive, proof
by contradiction, proof by cases, proof by counterexample, and mathematical induction. Each
method serves a specific purpose: direct proofs establish implications step by step; contrapositives
and contradictions leverage logical equivalence and refutation; counterexamples demonstrate the
limits of general statements; and induction allows us to prove assertions about infinite sets, such
as the natural numbers.

Together, these concepts form the core of mathematical reasoning. They ensure the validity of
results while fostering the rigor and clarity that are essential for advanced studies in mathematics

and computer science.
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