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Chapter 1

Numerical series

1.1 Series with real or complex terms

Definition 1.1.1. Let (un)n∈N be a sequence of real or complex numbers. We call a

numerical series (respectively complex series) of general term un, any expression of

the form:

u0 + u1 + ... + un + ... =
∑
n≥0

un. (1.1)

The real numbers (respectively the complexe numbers) u0,u1, ... un, ... are called

terms of the series.

Let us now consider the following partial sums:

Sn = u0 + u1 + ... + un =

n∑
k=0

uk. (1.2)

The number Sn is called partial sum of order n of the series
∑

n≥0
un, and the sequence

(Sn) is called sequence of partial sums of the series
∑

n≥0
un.

Definition 1.1.2. Let
∑

n≥0
un be a series with real terms or complex. We say that the

series
∑

n≥0
un converges if the sequence of partial sums (Sn) converges, and it diverges

if the sequence of partial sums diverges.

1
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Definition 1.1.3. When the series
∑

n≥0
un converges, we call sum of the series, the

limit S of the sequence of partial sums and we write:

S = lim
n→+∞

Sn =
∑
n≥0

un. (1.3)

Definition 1.1.4. Let
∑

n≥0
un be a convergent series of sum S. We call rest of order

n of the series
∑

n≥0
un, the number Rn which defined by:

Rn = S − Sn =
∑

k≥n+1

uk. (1.4)

We then have the following equivalence:∑
n≥0

un converge ⇔ lim
n→+∞

Sn = S⇔ lim
n→+∞

Rn = 0. (1.5)

Remak 1.1. We also deduce that the nature of a series does not change, in removing

a finite number of its terms. On the other hand, if the series converges, the value of

its sum depends on all the terms of the series.

Example 1.1.1. (Geometric series)

The geometric series
∑

n≥0
Rn is:

1. convergent if and only if |R| < 1, in this case S =
1

1 − R
.

2. divergent if and only if |R| ≥ 1.

Proposition 1.1.1. ( Telescopic process) Let (un) and (vn) be two sequences of

real or complex numbers, such that un = vn+1−vn. Then, the series
∑

n≥0
un converges

if and only if the sequence (vn) converges, and in this case:∑
n≥0

un = lim
n→+∞

vn − v0. (1.6)

Proof. Indeed, the proof is made of the following equality:

n∑
k=0

uk =

n∑
k=0

(vk+1 − vk) = vk+1 − v0.

�
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Example 1.1.2. (Case of convergence) Let us consider the series of general term

un =
1

n(n + 1)
, n ≥ 1.

The term un can be rewritten as:

un =
1
n
−

1
n + 1

,n ≥ 1.

Therefore:

Sn =

n∑
k=1

uk =
(1

1
−

1
2

)
+

(1
2
−

1
3

)
+ ... +

(1
n
−

1
n + 1

)
= 1 −

1
n + 1

.

Since limn→+∞ Sn = 1, it follows that the series
∑

n≥1
un is convergent of sum S = 1.

Example 1.1.3. (Case of divergence) Let us consider the series of general term

un = ln(1 +
1
n

), n ≥ 1.

The term un can be rewritten as:

un = ln(n + 1) − ln(n), n ≥ 1. (1.7)

Hence:

Sn =

n∑
k=1

uk = (ln 2 − ln 1) + (ln 3 − ln 2) + ... + (ln(n + 1) − ln(n))

= ln(n + 1).

Since limn→+∞ Sn = +∞, it follows that the series
∑

n≥1
un diverges.

Proposition 1.1.2. ( Necessary condition of convergence) For a numerical series∑
n≥0

un to be convergent, it is necessary that its general term un tends towards zero.

Proof. Suppose that
∑

n≥0
un converges to S = limn→+∞ Sn. We then have:

lim
n→+∞

un = lim
n→+∞

Sn − Sn−1 = S − S = 0. (1.8)
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Corollary 1.1.1. (Sufficient condition of divergence) A sufficient condition for a

serie is divergent, is that its general term does not tend towards zero.

Corollary 1.1.2. The converse of Proposition 1.1.2 is false in general. Indeed, the

series harmonic
∑

n≥1

1
n

diverges, while its general term tends towards zero.

�

1.1.1 Algebraic structure of the set of convergent

series

Proposition 1.1.3. Let
∑

n≥0
un and

∑
n≥0

vn be two numerical or complex series. We

then have the following properties:

1. If
∑

n≥0
un is convergent with sum S1 and if

∑
n≥0

vn is convergent with sum S2,

then
∑

n≥0
(un + vn) is convergent with sum S1 + S2.

2. If
∑

n≥0
un is convergent with sum S1 and if α ∈ R (where C ), then

∑
n≥0

(αun)

is convergent with sum αS1.

Proof. The proof of this proposition follows immediately from the properties

of the limits of sequences. �

Remak 1.2. With these two previous operations, we can easily demonstrate that

the set of convergent series is a subspace vector.

1.1.2 Other algebraic operations

Proposition 1.1.4. Let
∑

n≥0
un and

∑
n≥0

vn be two numerical or complex series. We

then have the following supplimentary properties:

1. If
∑

n≥0
un diverges and if α ∈ R∗, then

∑
n≥0

(αun) diverges.

2. If
∑

n≥0
un converges and if

∑
n≥0

vn diverges, then
∑

n≥0
(un + vn) diverges.

3. If the two series
∑

n≥0
un and

∑
n≥0

vn are divergent, we cannot conclude anything

about the nature of the series
∑

n≥0
(un +vn), it can be convergent, as it can be divergent.
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Proof. The proof of this proposition follows immediately from the properties

of the limits of sequences. �

1.1.3 Cauchy criterion

Theorem 1.1.1. Let
∑

n≥0
un be a series with real terms or complex. This series is

convergent if and only if:

∀ε > 0, ∃n0 ∈N, ∀p, q ∈N, p > q ≥ n0, we have

∣∣∣∣∣∣∣∣
p∑

k=q+1

uk

∣∣∣∣∣∣∣∣ < ε. (1.9)

Proof. The proof of this theorem is done using the Cauchy criterion following

the partial sums Sn =
n∑

k=0
uk, and the fact that Sp − Sq =

p∑
k=q+1

uk. �

1.2 Positive terms series

Definition 1.2.1. We call a series with a positive terms any series whose general

term un verifies:

un ≥ 0, for all n ≥ 0. (1.10)

Proposition 1.2.1. Let
∑

n≥0
un be a series with real terms positive. Then this series

converges towards S, if and only if the sequence (Sn) of its partial sums is majorized.

In this case, we have:

Sn ≤ S, for all n ≥ 0. (1.11)

Proof. Since Sn+1−Sn = un+1 ≥ 0, for all n ≥ 0, it follows that (Sn) is increased,

so for it to be convergent, it is necessary and sufficient that it be majorized.

In this case, the limit of the sequence of partial sums (Sn) majore all the terms

of the sequence. �

Remak 1.3. If (Sn) is not majorized, limn→+∞ Sn = +∞, and the series
∑

n≥0
un

diverges.
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1.2.1 Comparison theorems

Theorem 1.2.1. Given two series with positive terms
∑

n≥0
un and

∑
n≥0

vn verifying :

∃n0 ∈N, such that for all n ≥ n0,un ≤ vn, (1.12)

we then have:

1.
∑

n≥0
vn converge implies

∑
n≥0

un converges.

2.
∑

n≥0
un diverges implies

∑
n≥0

vn diverges.

Proof. 1. Let’s pose for all n ∈ N, Sn =
n∑

k=0
uk and Tn =

n∑
k=0

vk. Since un ≤ vn,

for all n ≥ n0, we then obtain :

Sn ≤ Tn, for all n ≥ n0. (1.13)

If the series
∑

n≥0
vn converges, the sequence (Tn) is therefore majorized, then

the sequence (Sn) is also majorizd, and thus the series
∑

n≥0
un converges.

2. The second property is the contrapositive of the first, so is also true. �

Corollary 1.2.1. Let
∑

n≥0
un and

∑
n≥0

vn be two series with positive terms. Suppose

that there exist two strictly positive real numbers α and β verifying:

αun ≤ vn ≤ βun, (1.14)

then
∑

n≥0
un and

∑
n≥0

vn are of the same nature.

Proof. Applying the Theorem 1.2.1 twice, gives us: if the series with general

term vn converges, the series with general term un converges and if the series

with general term un converges, the series with general term vn converges.

Which shows that the two series are of the same nature. �

Example 1.2.1. Consider the general term number series:

un =
θn

√
n

, θ ≥ 0 and n > 0. (1.15)

* If θ ≥ 1, un ≥
1
√

n
≥

1
n

. Since
∑

n≥1

1
n

diverges, the considered series also diverges.

* If 0 ≤ θ < 1, un ≤ θn. Since
∑

n≥1
θn converges (geometric series), the considered

series also converges.
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Theorem 1.2.2. Let
∑

n≥0
un and

∑
n≥0

vn be two series with positive terms. Suppose

there exists a positive real l (or l = +∞), such that limn→+∞
un

vn
= l, we then have:

1. If l = 0 and the series
∑

n≥0
vn converge, the series

∑
n≥0

un converges.

2. If l = +∞ and the series
∑

n≥0
vn diverge, the series

∑
n≥0

un diverges.

3. If l , 0 and , +∞, both
∑

n≥0
vn and

∑
n≥0

un are of the same nature.

Proof. 1. By definition

lim
n→+∞

un

vn
= 0⇐⇒ ∀ε > 0, ∃n0 ∈N, ∀n ∈N, n ≥ n0, we have

un

vn
< ε.

(1.16)

Let us choose ε = 1, so we have un < vn. Since the series
∑

n≥0
vn converges, the

series
∑

n≥0
un also converges.

2. Similarly

lim
n→+∞

un

vn
= +∞⇔ lim

n→+∞

vn

un
= 0⇐⇒ ∀ε > 0, ∃n0 ∈N, ∀n ∈N, n ≥ n0, we have

vn

un
< ε.

(1.17)

Let us choose ε = 1, so we have un > vn. Since the series
∑

n≥0
vn diverges, the

series
∑

n≥0
un also diverges.

3. If l , 0 and , +∞,

lim
n→+∞

un

vn
= l⇐⇒ ∀ε > 0, ∃n0 ∈N, ∀n ∈N, n ≥ n0, we have

(un

vn
− l

)
< ε.

(1.18)

Let us choose ε < l,we therefore have (l−ε)vn < un < (l+ε)vn. Using Corollary

1.2.1 confirms us the reresult, by taking α = l − ε > 0 and β = l + ε. �

1.2.2 Usual rules of convergence

Riemann’s rule

Riemann’s rule amounts to comparing a series with given positive terms to

a Riemann series.

Definition 1.2.2. A Riemann series is any numerical series whose general term

un =
1

nα
, α ∈ R
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.

Proposition 1.2.2. The Riemann series converges, for all α > 1.

Proof. If α ≥ 0, limn→+∞ un , 0, the series
∑

n≥1
un is therefore divergent.

Let us now assume that α > 0, and consider the function f , which is defined

on ]0,+∞[ by f (x) =
1
xα
.

This function is positive defined, continuous and decreasing on ]0,+∞[ .By

Theorem ?? (see Chapter ??), the series
∑

n≥1
un and the generalized integral

+∞∫
1

f (x)dx are the same nature. Let

F(x) =

y∫
1

f (x)dx =


ln(y), if α = 1,

1
(1 − α)yα−1 −

1
1 − α

, if α , 1.
(1.19)

The function F has a finite limit, if and only if α > 1, which shows that the

series
∑

n≥1
un converges if and only if α > 1. �

Proposition 1.2.3. (Riemann’s rule)

Let
∑

n≥1
un be a series with positive real terms and let α ∈ R. Suppose there exists a

positive real number l (or l = +∞) , such that lim nαun = l . We then have:

1. If l = 0 and α > 1, the series
∑

n≥1
un converges.

2. If l = +∞ and α ≤ 1, the series
∑

n≥1
un diverges.

3. If l , 0 and if l , +∞, the two series
∑

n≥1
un and

∑
n≥1

1
nα

are the same nature.

Proof. 1. By definition

lim
n→+∞

nαun = 0⇐⇒ ∀ε > 0, ∃n0 ∈N, ∀n ∈N, n ≥ n0, we have nαun < ε.

(1.20)

Let us choose ε = 1, we therefore have un <
1

nα
. Since

∑
n≥1

1
nα

converges for

all α > 1, the series
∑

n≥1
un also converges for all α > 1.

2. If l = +∞ and α ≤ 1, still according to the definition of the limit

∃n1 ∈N, ∀n ∈N, n ≥ n1, we have nαun > ε. (1.21)
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Let us choose ε = 1,we then have un >
1

nα
. Since

∑
n≥1

1
nα

diverges for all α ≤ 1,

the series
∑

n≥1
un also diverges for all α ≤ 1.

3. The third property is the intersection of properties 1 and 2. �

D’Alembert’s rule

D’Alembert’s rule amounts to comparing a series with positive terms to a

geometric series.

Proposition 1.2.4. Let
∑

n≥1
un be a series with strictly positive real terms. Suppose

that there exists a positive real number l (or l = +∞), such that limn→+∞
un+1

un
= l

. We then have:

1. If l < 1, the series
∑

n≥1
un converges .

2. If l > 1, the series
∑

n≥1
un diverges.

Proof. By definition

lim
n→+∞

un+1

un
= l.⇐⇒ ∀ε > 0, ∃n0 ∈N, ∀n ∈N, n ≥ n0, we have

∣∣∣∣∣un+1

un
− l

∣∣∣∣∣ < ε.
(1.22)

1. If l < 1, let us choose ε, such that l + ε = k < 1, we therefore have
un+1

un
< k =

vn+1

vn
( by setting vn = kn). We therefore have:

un+1

vn+1
<

un

vn
< .... <

un0

vn0

= a (a > 0). (1.23)

That is, un < avn. Since
∑

n≥1
vn converges, the series

∑
n≥1

un converges .

2. If l > 1, let us choose ε, such that l − ε = k ≥ 1, we therefore have
un+1

un
≥ 1. Since (un) is increasing non-identically zero, we therefore have

limn→+∞ un , 0, and then the series
∑

n≥1
un diverges. �

Cauchy’s rule

Cauchy’s rule also amounts to comparing a series with positive terms to a

geometric series.



Smail KAOUACHE. Courses of Mathematical Analysis 3 (2025/2026) 10

Proposition 1.2.5. Let
∑

n≥1
un be a series with strictly positive real terms. Suppose

that there exists a positive real number l (or l = +∞), such that limn→+∞
n
√

un = l .

We then have:

1. If l < 1, the series
∑

n≥1
un converges .

2. If l > 1, the series
∑

n≥1
un diverges.

Proof. By definition

lim
n→+∞

n
√

un = l⇐⇒ ∀ε > 0, ∃n0 ∈N, ∀n ∈N, n ≥ n0, we have
∣∣∣ n
√

un − l
∣∣∣ < ε.
(1.24)

1. If l < 1, let’s choose ε, such that l + ε = k < 1, we then have un < kn.

Since
∑

n≥1
kn converges for all k < 1 (geometric series), the series

∑
n≥1

un also

converges .

2. If l > 1, let us choose ε, such that l − ε = k ≥ 1, we therefore have un ≥ 1.

Since limn→+∞ un , 0, the series
∑

n≥1
un diverges . �

Raabe and Duhamel rule

The Raabe-Duhamel rule amounts to comparing a given series with positive

terms to a Riemann series.

Proposition 1.2.6. Let
∑

n≥1
un be a series with positive terms. Assume that the

following limit exists:

l = lim
n→+∞

n(
un

un+1
− 1), (1.25)

we then have:

1. If l > 1, the series
∑

n≥1
un converges.

2. If l < 1, the series
∑

n≥1
un diverges.

Proof. By definition:

lim
n→+∞

n(
un

un+1
−1) = l⇔ ∀ε > 0, ∃n0 ∈N, ∀n ∈N, n ≥ n0, we have: l−ε < n(

un

un+1
−1) < l+ε.

(1.26)

1. Suppose that l > 1 and choose ε, such that n(
un

un+1
− 1) > l − ε = q > 1.

Let m ∈ R∗+ such that m ∈
]
1, q

[
, the series of general term wn =

1
nm is therefore
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convergent.

We can write:
wn

wn+1
=

(n + 1
n

)m

=
(
1 +

1
n

)m

. (1.27)

By performing the limited development of the function x 7→
1

1 + x
in the

neighborhood of 0, we obtain:

wn

wn+1
= 1 +

m
n

+
1
n2 δ(n), (1.28)

where
δ(n)

n
→ 0, when n→ +∞. That is to say:

For all η = q −m > 0, ∃n1 ∈N, ∀n ∈N, n ≥ n1, we have:
δ(n)

n
< q −m.

(1.29)

We then have the following inequalities:

m +
δ(n)

n
< q < n(

un

un+1
− 1), for all n ≥ max(n0,n1) = n2, (1.30)

or in an equivalent manner:

wn

wn+1
= 1 +

m
n

+
1
n2 δ(n) ≤

un

un+1
. (1.31)

That is to say:
un+1

wn+1
≤

un

wn
≤ ... ≤

un2

wn2

= a (a > 0 (1.32)

Since
∑

n≥1
wn is convergent, it follows from the comparison theorem that

∑
n≥1

un

is also convergent.

2. Now, suppose that l < 1 and choose ε, such that:

n(
un

un+1
− 1) < l + ε = q ≤ 1, for all n ≥ n0. (1.33)

Let us also consider the series with general term wn = 1
n , which is divergent.

From the inequality (1.33), we can easily see:

un

un+1
≤ 1 +

1
n

=
n + 1

n
=

wn

wn+1
. (1.34)

Since
∑

n≥1
wn is divergent, it follows from the previous method that

∑
n≥1

un is

also divergent. �



Smail KAOUACHE. Courses of Mathematical Analysis 3 (2025/2026) 12

Bertrand Series

Definition 1.2.3. A Bertrand series is any numerical series whose general term

un =
lnβ(n)

nα
, α ∈ R+

∗ and β ∈ R.

Proposition 1.2.7. The Bertrand series is:

1. convergent, if and only if

1.1. α > 1 and β ∈ R,

or else

1.2. α = 1 and β < −1.

2. divergent if and only if

2.1. α < 1 and β ∈ R,

or else

2.2. α = 1 and β ≥ −1.

Proof. 1.1. Let’s assume that α > 1 and β ∈ R. So it exists γ ∈ ]1, α[ verifying

lim
n→+∞

nγun = lim
n→+∞

lnβ(n)
nα−γ

= 0, (since α − γ > 0). (1.35)

Since γ > 1, the use of Proposition 1.2.3 confirms the convergence of the

considered series.

1.2 and 2.2. Now suppose that α = 1. We can write un =
lnβ(n)

n
.

* If β = 0,
∑

n≥1
un =

∑
n≥1

1
n

which is divergent.

* If β > 0, we have:

lim
n→+∞

nun = lim
n→+∞

lnβ(n) = +∞, (1.36)

and the series
∑

n≥1
un is divergent by applying comparaison theorem.

* If β < 0, consider the function f defined by:

f (x) =
lnβ(x)

xα
, x ∈ ]δ,+∞[ (δ > 1). (1.37)

This function is positive defined, continuous and decreasing on ]δ,+∞[ .

According to Cauchy’s theorem, the series
∑

n≥2

lnβ(n)
nα

and the generalized
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integral
+∞∫
δ

lnβ(x)
xα

dx are of the same nature.

We know that

t∫
δ

lnβ(x)
xα

dx =


1

β + 1

[
lnβ+1(t) − lnβ+1(δ)

]
, if β , −1,

ln
( ln t

ln δ

)
, if β = −1.

(1.38)

Which gives:

lim
t→+∞

t∫
δ

lnβ(x)
xα

dx =


−

lnβ+1(δ)
β + 1

, if β < −1,

+∞, if β > −1,

+∞, if β = −1

(1.39)

So, ifα = 1 and β < −1, the integral
+∞∫
δ

lnβ(x)
xα

dx converges, whereas if α = 1

and β ≥ −1, the integral
+∞∫
δ

lnβ(x)
xα

dx diverges.

2.2 Now, let us suppose that α < 1 and β ∈ R. So it exists γ ∈ ]α, 1[ verifying

lim
n→+∞

nγun = lim
n→+∞

nγ−α lnβ(n) = +∞, since γ − α > 0. (1.40)

Since γ < 1, the use of Proposition 1.2.3 confirms the divergence of the

series
∑

n≥1
un. �

1.3 Series of arbitrary sign

1.3.1 Convergence rules for series of arbitrary sign

Abel’s Rule

Proposition 1.3.1. Let (bn) be a positive sequence decreasing towards 0, and let

(an) be a sequence verifying:

∃M > 0,∀n ∈N,

∣∣∣∣∣∣∣An =

n∑
k=1

ak

∣∣∣∣∣∣∣ ≤M. (1.41)

Then, the series of general term un = anbn is convergent.
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Proof. We can write:

+∞∑
n≥1

un = a1(b1 − b2) + (a1 + a2)(b2 − b3) + ... + (a1 + a2 + ... + an)(bn − bn−1) + ...

=

+∞∑
n≥1

(a1 + a2 + ... + an)(bn − bn+1)

=

+∞∑
n≥1

An(bn − bn+1). (1.42)

We can then see the series of general terms appear:

vn = An(bn − bn+1). (1.43)

We just need to show that this series is convergent. Indeed:

|vn| = |An(bn − bn+1)|

≤ M(bn − bn+1), car bn − bn+1 ≥ 0 ((bn) is decreasing). (1.44)

The series
+∞∑
n≥1

(bn − bn+1) is convergent, since the sequence of its partial sums

is verified:
n∑

k=1

(bk − bk+1) = b1 − bn+1 → b1, as n→ +∞. (1.45)

The comparison theorem asserts the absolute convergence of the series
+∞∑
n≥1

vn.

It follows that the starting series
+∞∑
n≥1

un is convergent. �

1.3.2 Alternating series

Definition 1.3.1. An alternating series is any series whose general term

un = (−1)nan, an ≥ 0, for all n ∈N. (1.46)

Convergence rule for alternating series

Proposition 1.3.2. (Leibniz criterion)

Let
∑

n≥0
un be an alternating series. If (|un| is a sequence decreasing towards 0, then



Smail KAOUACHE. Courses of Mathematical Analysis 3 (2025/2026) 15

the series
∑

n≥0
un is convergent, moreover we have:

∣∣∣∣∣∣∣
+∞∑

k=n+1

(−1)kuk

∣∣∣∣∣∣∣ ≤ un+1. (1.47)

Proof. The series
∑

n≥0
un is alternating, so we can write:

un = un = an × bn, such thate bn = (−1)n and an ≥ 0, for all n ∈N. (1.48)

Since

∣∣∣∣∣∣ n∑
k=0

bk

∣∣∣∣∣∣ ≤ 1 and (|un| = an) a sequence decreasing towards 0, the use of

Abel’s criterion shows the convergence of the series
∑

n≥0
un.

Let now (Sn) be the partial sum of the series
∑

n≥0
un, we then have

S2n+2 − S2n = u2n+2 − u2n+1 ≤ 0, (1.49)

S2n+1 − S2n−1 = −u2n+1 + u2n ≥ 0, for all n ∈N. (1.50)

So the sequence (S2n) is decreasing and the sequence (S2n+1) is increasing.

Moreover we have:

S2n+1 − S2n = −u2n+1, for all n ∈N. (1.51)

Which shows that the sequence (S2n+1 − S2n) tends to 0. The sequences (S2n)

and (S2n+1) are therefore adjacent and thus both converge to the same finite

limit S. Consequently the sequence (Sn) converges to S, which shows once

again that the series
∑

n≥0
un converges. Furthermore, we have:

S2n+1 ≤ S ≤ S2n+2 = S2n+1 + u2n+2, for all n ∈N. (1.52)

That is to say

S − S2n+2 =≤ u2n+2, for all n ∈ (1.53)

We also have

S2n − u2n+1 = S2n+1 ≤ S ≤ S2n, for all n ∈N, (1.54)

or in an equivalent manner:

− u2n+1 ≤ S − S2n ≤ 0, for all n ∈N. (1.55)
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It follows that, for all n ∈N :∣∣∣∣∣∣∣
+∞∑

k=n+1

(−1)kuk

∣∣∣∣∣∣∣ = |S − Sn| ≤ un+1, (1.56)

where S is the sum of the series. �

1.3.3 Absolutely convergent series

Definition 1.3.2. A series with general term un is said to be absolutely convergent

if the series with general term |un| converges.

Proposition 1.3.3. If the numerical series with general term un converges abso-

lutely, then this series is convergent.

Proof. Suppose that the series of general term un converges absolutely. Ap-

plying the Cauchy criterion to the series of general term |un|, we find:

∀ε > 0, ∃n0 ∈N, ∀p, q ∈N, p > q ≥ n0, we have
p∑

k=q+1

|uk| < ε. (1.57)

On the other hand, we have:∣∣∣∣∣∣∣∣
p∑

k=q+1

uk

∣∣∣∣∣∣∣∣ ≤
p∑

k=q+1

|uk| < ε. (1.58)

The series of the general term un then verifies the Cauchy criterion. This

series is therefore indeed convergent. �

Remak 1.4. The converse of this proposition is false. For example, the series with

general term
(−1)n

n
converges, while it does not converge absolutely.

Proposition 1.3.4. Let
∑

n≥0
un be a numerical series with arbitrary terms. Suppose

that there exists a positive numerical sequence verifying:

∃n0 ∈N,∀n ≥ n0, we have |un| ≤ vn, (1.59)

then, if
∑

n≥0
vn converges,

∑
n≥0

un converges absolutely.

Proof. The proof proceeds immediately, using the comparison theorem of

series with positive terms. �



Smail KAOUACHE. Courses of Mathematical Analysis 3 (2025/2026) 17

1.3.4 Semi-convergent series

Definition 1.3.3. A series with general term un is said to be semi-convergent, when

it converges without being absolutely convergent.

We also have the following immediate properties:

Proposition 1.3.5. Suppose that the two series of respective general terms un and

vn are absolutely convergent (respectively semi-convergent), then the sum series

of general term (un + vn) is absolutely convergent (respectively semi-convergent),

and the series produced by a scalar of general term αun is absolutely convergent

(respectively semi-convergent), for all α ∈ k(k = R or C).

Proof. The proof of this proposition proceeds immediately using the Cauchy

criterion. �

Example 1.3.1. It can be easily shown that the alternating Riemann series
∑

n≥1

(−1)n

nα
,

α ∈ R is:

* divergent for all α ≤ 0,

* absolutely convergent, for all α > 1,

* semi-convergent, for all 0 < α ≤ 1.

1.3.5 Additional properties of series convergent

Property 1: Use of the D’Alembert and Cauchy criteria

We know that these two criteria apply a priori to series with positive terms.

Let
∑

n≥0
un be a series with of arbitray sign. We can therefore perfectly use

these criteria with any series of terms, but we must be very careful not to

forget the absolute values.

Let us now suppose that l1 = limn→+∞

∣∣∣∣∣un+1

un

∣∣∣∣∣ exists (respectively

l2 = limn→+∞
n√
|un| exists).

* If l1 < 1 (respect. l2 < 1), the D’Alembert criterion (resp. the Cauchy

criterion) asserts that the series
∑

n≥0
|un| is convergent. The

∑
n≥0

un is then

absolutely convergent.
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* If l1 > 1 (respect. l2 > 1), the D’Alembert criterion (resp. the Cauchy

criterion) asserts that the general term |un| tends to +∞. The series
∑

n≥0
un is

then divergent.

Example 1.3.2. Consider the series of general term un =
(3n + 1

n + 1

)3n

αn, α ∈ R

and n ≥ 0.

We have limn→+∞
n√
|un| = 27 |α| . the Cauchy criterion states that:

1. If |α| <
1
27

, the considered series is absolutely convergent.

2. 1. If |α| >
1
27

, the considered series is divergent.

3. If 1. If |α| =
1

27
, the value absolute of general term becomes

|un| =
(3n + 1

3n + 3

)3n

=
(
1 −

2
3n + 3

)3n

→ exp(−2)(, 0), when n→ +∞,

and the considered series is divergent.

Property 3: Use of Limited Developments

By performing a limited development of the general term un of the series∑
n≥0

un in the neighborhood of infinity at a sufficiently high order (to have an

absolutely convergent remainder), we can quickly conclude on the nature of

this series.

As an example, the series of general term un =
(−1)n

n + (−1)n . We can éwrite:

un =
(−1)n

n
×

1

1 +
(−1)n

n

. (1.60)

By performing the limited development of the function x 7→
1

1 + x
in the

neighborhood of 0, we obtain:

un =
(−1)n

n

(
1 −

(−1)n

n
+

1
n
ε(n)

)
=

(−1)n

n
−

1
n2 +

(−1)n

n2 ε(n), où ε(n)→ 0, when n→ +∞. (1.61)

We therefore have the sum of two convergent series and an absolutely con-

vergent remainder. The considered series is therefore convergent.
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1.4 Cauchy product of series

Definition 1.4.1. We consider two numerical series with general terms un and vn,

respectively. We call the Cauchy product of these two series the series with general

term:

wn =

n∑
k=0

ukvn−k. (1.62)

Proposition 1.4.1. Let
∑

n≥0
un and

∑
n≥0

un be two absolutely convergent series. Then

the Cauchy product series with general term defined by (1.62) is absolutely conver-

gent, and moreover, we have:∑
n≥0

wn =

∑
n≥0

un

 ×
∑

n≥0

un

 . (1.63)

Proof. For all n ∈N, Let us consider the following partial sums:

Sn =

n∑
k=0

uk,Tn =

n∑
k=0

vn and Rn =

n∑
k=0

wn. (1.64)

Let us also consider the following notations:

S =
∑
n≥0

|un| and T =
∑
n≥0

|vn| . (1.65)

The two sequences (Sn) and (Tn) are convergent, so they satisfy the following

Cauchy criterion:

∀ε > 0, ∃n0 ∈N, ∀p,n ∈N, p > n ≥ n0, we have

∣∣∣∣∣∣∣
p∑

k=n+1

uk

∣∣∣∣∣∣∣ < ε and

∣∣∣∣∣∣∣
p∑

k=n+1

vk

∣∣∣∣∣∣∣ < ε,
(1.66)

On the one hand, R2n − SnTn can be rewritten in the form:

R2n − SnTn = u0(vn+1 + ... + v2n) + u1(vn+1 + ... + v2n−1) + ... + un−1vn+1

+v0(un+1 + ... + u2n) + v1(un+1 + ... + u2n−1) + ... + vn−1un+1.

For all p,n ∈N, p > n ≥ n0, we then have

|R2n − SnTn| ≤ ε

 n∑
k=0

|uk|

n∑
k=0

|vk|


≤ ε(S + T). (1.67)
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So (R2n) is convergent, and furthermore, we have:

lim
n→+∞

R2n = lim
n→+∞

SnTn =

∑
n≥0

un

 ×
∑

n≥0

un

 . (1.68)

On the other hand, for all n ≥ n0, we have:

|R2n+1 − R2n| = |(u0v2n+1 + ... + un+1vn) + (v0u2n+1 + ... + vn+1un)|

≤ ε(S + T), (1.69)

which ensures the convergence of (R2n+1).

Since (R2n) and (R2n+1) are convergent, (Rn) is also convergent, and moreover:

lim
n→+∞

Rn = lim
n→+∞

R2n+1 = lim
n→+∞

R2n =

∑
n≥0

un

 ×
∑

n≥0

un

 . (1.70)

That is to say: ∑
n≥0

wn

 =

∑
n≥0

un

 ×
∑

n≥0

un

 .
�

1.5 Exercises about chapter 1

Exercise 1.5.1. Show that the following numerical series are convergent and cal-

culate their sums:

1)
+∞∑
n=2

1
n(n − 1)

2)
+∞∑
n=0

n2

n!
3 )

+∞∑
n=0

(−1)n+1 cos(nx)
2n , x ∈ R.

Exercise 1.5.2. Study the nature of the following numerical series:

1)
+∞∑
n=1

n sin
(1

n

)
2)

+∞∑
n=1

arctan
( 1

n2

)
3)

+∞∑
n=1

αn

α2n + αn + 1
(α ≥ 0)

4)
+∞∑
n=1

(n + a
n + b

)n2

, a et b ∈ R 5)
+∞∑
n=1

ln(n)
n2 + 2

6)
+∞∑
n=1

1 × 3 × ... × (2n − 1)
2 × 4 × ... × (2n)

7)
∑
n≥1

2n

n2 sin2n(θ), θ ∈
[
0,
π
2

]
8)

exp(inx)
n

, x ∈ R.
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Exercise 1.5.3. Let θ be a real number. Study, according to the value of θ, the

absolute convergence, the semi-convergence and the divergence of the following

numerical series:

1)
+∞∑
n=1

(−1)n

nθ
, 2)

+∞∑
n=1

(2n − 1
n + 1

)2n

θn , 3)
+∞∑
n=1

cos(n)
nθ + cos(n)

.
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