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Chapter 1

Numerical series

1.1 Series with real or complex terms

Definition 1.1.1. Let (u,),eN be a sequence of real or complex numbers. We call a
numerical series (respectively complex series) of general term u,,, any expression of
the form:
g+ U+ ...+, +...= Z Upy. (1.1)
>0
The real numbers (respectively the complexe numbers) ug, uy, ... Uy, ... are called
terms of the series.

Let us now consider the following partial sums:

n

Sy=ug+u+...+u, = Z Up. (1.2)
k=0

The number S, is called partial sum of order n of the series ), u,, and the sequence
n>0
(Sy) is called sequence of partial sums of the series Y, u,.
n=0

Definition 1.1.2. Let Y, u, be a series with real terms or complex. We say that the
n=0
series ), u, converges if the sequence of partial sums (S,) converges, and it diverges
n>0
if the sequence of partial sums diverges.
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Definition 1.1.3. When the series Y, u, converges, we call sum of the series, the
n>0
limit S of the sequence of partial sums and we write:

S= lim S, = Z Uy, (1.3)

n—+00
n>0

Definition 1.1.4. Let ) u, be a convergent series of sum S. We call rest of order

n>0
n of the series ), u,, the number R,, which defined by:
n>0
R,=S-8, = Z Uy (1.4)
k>n+1

We then have the following equivalence:

Z u, converge < lim S, =S & lim R, =0. (1.5)
= n—+oo n—+oo
Remak 1.1. We also deduce that the nature of a series does not change, in removing
a finite number of its terms. On the other hand, if the series converges, the value of

its sum depends on all the terms of the series.

Example 1.1.1. (Geometric series)

The geometric series ), R" is:
n>0

1
1. convergent if and only if |R| < 1, in this case S = 1R
2. divergent if and only if |IR| > 1.

Proposition 1.1.1. ( Telescopic process) Let (u,) and (v,) be two sequences of

real or complex numbers, such that u,, = v,.1 —vy. Then, the series ), u, converges

n=0
if and only if the sequence (v,) converges, and in this case:
Z uy = lim v, — vp. (1.6)
n—+co

n>0
Proof. Indeed, the proof is made of the following equality:

n n

Z U = Z (Vk+1 = Uk) = Vgy1 — 0.

k=0 k=0
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Example 1.1.2. (Case of convergence) Let us consider the series of general term

u —L n>1
" am+1) T

The term u,, can be rewritten as:

=— - >1
N T hr "
Therefore:
n
1 1 1 1 1 1
S = ;”k—(rz) z-3) (- 77)
1
= 1- .
n+1

Since limy, 100 Sy = 1, it follows that the series Y, uy is convergent of sum S = 1.
n>1

Example 1.1.3. (Case of divergence) Let us consider the series of general term

u, =In(1 + l), n>1.
n
The term u,, can be rewritten as:
Uy, =In(n+1) —In(n), n > 1. (1.7)
Hence:
S, = Z U =(In2-In1)+ (In3 —-In2) + ... + (In(n + 1) — In(n))
k=1
= In(n+1).

Since limy, 100 Sy = +00, it follows that the series Y, u, diverges.
n>1

Proposition 1.1.2. ( Necessary condition of convergence) For a numerical series

Y. uy to be convergent, it is necessary that its general term u, tends towards zero.
n=0

Proof. Suppose that ), u, converges to S = lim,_, 1« Sy. We then have:
n>0

lim u, = im Sy —Sy.1=S—S =0. (1.8)

n—+oo n—+oo
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Corollary 1.1.1. (Sufficient condition of divergence) A sufficient condition for a

serie is divergent, is that its general term does not tend towards zero.

Corollary 1.1.2. The converse of Proposition 1.1.2 is false in general. Indeed, the

. . 1 . .
series harmonic ), — diverges, while its general term tends towards zero.
nx1

1.1.1 Algebraic structure of the set of convergent
series

Proposition 1.1.3. Let ), u, and }, v, be two numerical or complex series. We
n=0 n=0

then have the following properties:

1. If ¥ uy is convergent with sum Sy and if ), v, is convergent with sum S,,

n>0 n>0
then Y, (u, + vy) is convergent with sum S; + S,.
n>0
2. If ¥ uy is convergent with sum Sy and if « € R (where C ), then Y, (auy,)
n>0 n>0

is convergent with sum aS;.

Proof. The proof of this proposition follows immediately from the properties

of the limits of sequences. ]

Remak 1.2. With these two previous operations, we can easily demonstrate that

the set of convergent series is a subspace vector.

1.1.2 Other algebraic operations

Proposition 1.1.4. Let Y, u, and Y, v, be two numerical or complex series. We
n>0 n>0
then have the following supplimentary properties:

1. If Y. u, diverges and if « € R*, then Z (auy) diverges.

n>0

2. If Z u, converges and if Z Uy dzverges then Z (un + vy,) diverges.

3. If the two series ), uy and Z v, are divergent, we cannot conclude anything
n>0 n>0
about the nature of the series ), (u, +v,), it can be convergent, as it can be divergent.
n>0
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Proof. The proof of this proposition follows immediately from the properties

of the limits of sequences. ]

1.1.3 Cauchy criterion

Theorem 1.1.1. Let Y u, be a series with real terms or complex. This series is
n=0
convergent if and only if:

p

Zuk

k=g+1

Ye >0, dnp e N, Vp,g € N, p > g = ny, we have <e. (1.9)

Proof. The proof of this theorem is done using the Cauchy criterion following

n P
the partial sums S,, = }. uy, and the fact thatS, — S, = ). uy. O
k=0 k=g+1

1.2 Positive terms series

Definition 1.2.1. We call a series with a positive terms any series whose general
term uy, verifies:

Uy, 20, foralln > 0. (1.10)

Proposition 1.2.1. Let } u, be a series with real terms positive. Then this series
converges towards S, if a;;fioonly if the sequence (Sy,) of its partial sums is majorized.
In this case, we have:

S, <, foralln > 0. (1.11)

Proof. Since S,11—Sy, = up1 2 0, forall n > 0, it follows that (S,) is increased,
so for it to be convergent, it is necessary and sufficient that it be majorized.
In this case, the limit of the sequence of partial sums (S,) majore all the terms

of the sequence. ]

Remak 1.3. If (S,) is not majorized, lim,_, 400 Sy = +00, and the series Y, u,
n>0
diverges.
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1.2.1 Comparison theorems

Theorem 1.2.1. Given two series with positive terms Y, u, and Y, v, verifying :
n=0 n=0

dny € IN, such that for all n > ng, u, < vy, (1.12)

we then have:

1. Y, v, converge implies Y, u, converges.

n=0 n=>0
2. Y., uy diverges implies ), v, diverges.
n=0 n>0

n n

Proof. 1. Let’s pose foralln e N, S, = Y uy and T, = Y, k. Since u,, < vy,
k=0 k=0

for all n > ny, we then obtain :

S, £T,, forall n > ny. (1.13)

If the series ), v, converges, the sequence (1) is therefore majorized, then
n>0
the sequence (S,,) is also majorizd, and thus the series }. u, converges.
n>0
2. The second property is the contrapositive of the first, so is also true. O

Corollary 1.2.1. Let } u, and Y, v, be two series with positive terms. Suppose
n=0 n>0
that there exist two strictly positive real numbers o and p verifying:

auy <oy < Buy, (1.14)

then Y, u, and Y, v, are of the same nature.
n=>0 n>0

Proof. Applying the Theorem 1.2.1 twice, gives us: if the series with general
term v, converges, the series with general term 1, converges and if the series
with general term u, converges, the series with general term v, converges.

Which shows that the two series are of the same nature. |

Example 1.2.1. Consider the general term number series:
61’!
Y

Uy ,0>0andn > 0. (1.15)

1 1 .. 1 . . . .
*If0>1,u, > — > —. Since ), — diverges, the considered series also diverges.
n n n>1
*If0< 0 <1,u, <0" Since Y, 0" converges (geometric series), the considered
nx1
series also converges.
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Theorem 1.2.2. Let Y, u, and Y, v, be two series with positive terms. Suppose
n>0 n>0

. L. . u
there exists a positive real I (or | = +00), such that lim,_, ;. v_n = [, we then have:
n
1. If I = 0 and the series Y, v, converge, the series Y, u, converges.

n>0 n>0
2. If 1 = +oo and the series Y, v, diverge, the series Y, u, diverges.
n>0 n>0
3. If1 # 0and # +o0, both Y, v, and ), uy, are of the same nature.
n>0 n>0

Proof. 1. By definition

. u u
lim 2L =0e=VYe>0, Iy eN, YneN, n > ny, wehave = <e.
n—+oo Uy, .
(1.16)
Let us choose € = 1, so we have u,, < v,. Since the series }, v, converges, the
n>0
series ). u, also converges.

n>0

2. Similarly

lim ﬂ:+c><><i) lim ﬁ:0<=)Ve>0, dng € IN, Vn e N, n > ny, wehavev—n<€.
n—+co Uy, n—+co 1, Un
(1.17)
Let us choose € = 1, so we have u,, > v,. Since the series ), v, diverges, the
series ), u, also diverges. "
3.1f] f(% and # +oo,
nl_i)erZ—: =l Ve>0,IngeN, Yne N, n > nyg, we have (?—l)<e.
(1.18)
Letuschoosee < [, we therefore have (I-€)v, < u, < (I+€)v,. Using Corollary

1.2.1 confirms us the reresult, by takinga =/—-e>0and f =1+e. ]

1.2.2 Usual rules of convergence

Riemann’s rule

Riemann’s rule amounts to comparing a series with given positive terms to

a Riemann series.
Definition 1.2.2. A Riemann series is any numerical series whose general term

1
un:—a,aelR
n
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Proposition 1.2.2. The Riemann series converges, for all a > 1.

Proof. If a > 0, limy,—, 4o Uy # O, the series Y u, is therefore divergent.
n>1
Let us now assume that @ > 0, and consider the function f, which is defined
1
on J0, +oo[ by f(x) = s
This function is positive defined, continuous and decreasing on ]0, +co[ .By

Theorem ?? (see Chapter ??), the series )}, u, and the generalized integral

n>1
+00
f f(x)dx are the same nature. Let
1
y e
In(y), ifa =1,
E(x) = dx = 1.19
0= [ s L )
1 1-a)y*! 1-a
The function F has a finite limit, if and only if @ > 1, which shows that the
series ), u, converges if and only if & > 1. O
n>1

Proposition 1.2.3. (Riemann’s rule)
Let Y u, be a series with positive real terms and let & € R. Suppose there exists a
n1

positive real number | (or | = +00) , such that lim n“u, = 1. We then have:

1. Ifl = 0and a > 1, the series ), u, converges.

nx1
2. Ifl = +ocoand a < 1, the series ), u, diverges.
nx1
1
3. If1 # 0 and if | # +oo, the two series ), u, and ), — are the same nature.

nx1 n>1

Proof. 1. By definition

hIP n“u, =0 Ve >0, Ang €N, VYn € N, n > ng, we have n“u,, < e.
n—-+oo
(1.20)

1 . 1
Let us choose € = 1, we therefore have u,, < ot Since Y, — converges for
n>1
all @ > 1, the series ), u, also converges for all a > 1.
nx>1

2. If | = +oo0 and a < 1, still according to the definition of the limit

dn; €N, Y¥n e N, n > ny, we have n“u, > €. (1.21)
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1 1
Let us choose € = 1, we then have u,, > prt Since Y, o diverges foralla <1,
n>1
the series ), u, also diverges forall « < 1.
n>1

3. The third property is the intersection of properties 1 and 2. |

D’Alembert’s rule

D’Alembert’s rule amounts to comparing a series with positive terms to a

geometric series.

Proposition 1.2.4. Let ), u, be a series with strictly positive real terms. Suppose
nx>1
. .. . u
that there exists a positive real number I (or | = +00), such that lim,_, ;« ARy
n
. We then have:

1. If1 <1, the series ), u, converges .
nx1
2. If1> 1, the series Y, u, diverges.

n>1

Proof. By definition

lirP MZH =l.e=Ve>0, dnygeN, V¥neN, n > ny, we have Unt1 _ l' <e.
n—+oo n
1.22)
1. If I < 1, let us choose €, such that [ + ¢ = k < 1, we therefore have
Pt = Dot ( by setting v, = k"). We therefore have:
uTl vn
u
it Mo <2~ (a > 0). (1.23)
On+1 On Oy

That is, u, < av,. Since }, v, converges, the series } u, converges .
n>1 n>1
2. If I > 1, let us choose ¢, such that | — ¢ = k > 1, we therefore have
Up+1
Uy
limy 400 1y # 0, and then the series ), u, diverges. m|
n>1

> 1. Since (u,) is increasing non-identically zero, we therefore have

Cauchy’s rule

Cauchy’s rule also amounts to comparing a series with positive terms to a

geometric series.
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Proposition 1.2.5. Let ), u, be a series with strictly positive real terms. Suppose
nx1

that there exists a positive real number I (or | = +00), such that limy, e {/tn = 1.
We then have:
1. If1 <1, the series ), u, converges .
n>1

2. If1 > 1, the series ), u, diverges.

n>1

Proof. By definition

nl_i)lpp()(/u_n:l@\ie>0, dng € N, Vn € N, n > ny, we have I’\’/u_,,—l| <e.
(1.24)

1. If I < 1, let’s choose €, such that [ + € = k < 1, we then have u,, < k".

Since ), k" converges for all k < 1 (geometric series), the series ), u, also

conve%}as . "=

2. If I > 1, let us choose €, such that [ — € = k > 1, we therefore have u,, > 1.

Since limy,_,+e0 4, # 0, the series )}, u, diverges . O
n=1

Raabe and Duhamel rule

The Raabe-Duhamel rule amounts to comparing a given series with positive

terms to a Riemann series.

Proposition 1.2.6. Let ), u, be a series with positive terms. Assume that the
nx1

following limit exists:

Un

I=1i -1), 1.25
Jim =D 125)
we then have:
1. If1 > 1, the series ), u, converges.
nx1
2. If1 < 1, the series ), u, diverges.
nx1
Proof. By definition:
lim n( Hn )=l Ve>0, IngeN, ¥Yn €N, n > ny, we have: I—e < n( U -1) < I+e.

n—=+00 Upyq n+1

u
(1.26)

n ~1)>l-e=g>1.

1. Suppose that ! > 1 and choose ¢, such that n(

Up+1

1
Letm € R} suchthatm € ]1,4[, the series of general term w,, = — is therefore
nm
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convergent.
We can write: . .
On =(”+1) =(1+1) . (1.27)
W1 n n
1
By performing the limited development of the function x Tox in the
neighborhood of 0, we obtain:
Wy m 1
=1+ —+ =0(n), 1.28
— prain (0 (1.28)
o(n) .
where - 0, when n — +oco. That is to say:
o(n)
Foralln=¢g-m>0, dn; € N, Yn € N, n > n;, we have: — <g-m.
(1.29)
We then have the following inequalities:
o
m+ ﬂ <g< n(ﬂ —1), for all n > max(ng, ny) = ny, (1.30)
n Un1
or in an equivalent manner:
Wy m 1 Uy,
=1+ —+—=0(n) < 1.31
Wn1 = (3D
That is to say:
Bl oMo <m0 (1.32)
Wn+1 Wy Wy,

Since ), w, is convergent, it follows from the comparison theorem that ) u,
n>1 n>1
is also convergent.

2. Now, suppose that / < 1 and choose €, such that:

Uy

n( -1 <l+e=g<1, foralln > ny. (1.33)

Ups1

Let us also consider the series with general term w,, = 1, which is divergent.

From the inequality (1.33), we can easily see:

1 n+1  w,

u
<1+ =

Un+1 n n Wn+1

(1.34)

Since ), w, is divergent, it follows from the previous method that }, u, is
nx1 n>1
also divergent. |
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Bertrand Series

Definition 1.2.3. A Bertrand series is any numerical series whose general term

_ Inf(n)

ne '

a e Rl and p e R.

n

Proposition 1.2.7. The Bertrand series is:
1. convergent, if and only if
11.a>1land R,
or else
12.a=1and g < -1.
2. divergent if and only if
21.a<land pe R,
or else
22.a=1and p = -1.

Proof. 1.1. Let’s assume that « > 1 and € R. So it exists y € ]1, a verifying

. . Infn
lim n’u, = lim ()
n—+oo n—+co NV

=0, (since @ —y > 0). (1.35)

Since y > 1, the use of Proposition 1.2.3 confirms the convergence of the

considered series.

. In(n)
1.2 and 2.2. Now suppose that @ = 1. We can write u,, = .
1
*IfB=0, ), u, = ), — which is divergent.
n>1 nz1 1
*1f B > 0, we have:
lim nu, = lim Inf(n) = +oo, (1.36)
n—+oo n—+oo

and the series )| u, is divergent by applying comparaison theorem.
nx1

*If B < 0, consider the function f defined by:

Inf(x)
xe

f(x) =

x €]06,+00[ (0 >1). (1.37)

This function is positive defined, continuous and decreasing on ]5, +oo[.

. , : Inf (1)
According to Cauchy’s theorem, the series }|
n=2

and the generalized



Smail KAOUACHE. Courses of Mathematical Analysis 3 (2025/2026) 13

+m1 B
integral f nxix) dx are of the same nature.
5
We know that
t 1 B+1 p+1 .
In? — |In""(t) = In""(6)|, it p # -1,
f I (gx)dx ! P +11n£ ] (1.38)
x .
5 h’l(m), lfﬁ=—1.
Which gives:
t IO g <
i [(W@ ) B o 1.39
dAm | =5 A0=Y o ifp > -1, (1.39)
’ oo, if g = —1
2 Inf (x

So, ifa =1 and < -1, the integral dx converges, whereas if « = 1

5 X
1P (x)
5 X

2.2 Now, let us suppose that a < 1 and € R. So it exists y € ]a, 1[ verifying

and > -1, the integral dx diverges.

lim n’u, = lir+n "~ *Inf(n) = +oo, since y—a>0. (1.40)
n—+0oo

n—+00

Since y < 1, the use of Proposition 1.2.3 confirms the divergence of the

series Y, 1. O
n>1

1.3 Series of arbitrary sign

1.3.1 Convergence rules forseries of arbitrary sign

Abel’s Rule

Proposition 1.3.1. Let (b,) be a positive sequence decreasing towards 0, and let
(ay) be a sequence verifying:

n

A”::2:uk

k=1

M > 0,¥n € N, <M. (1.41)

Then, the series of general term u, = a,b, is convergent.
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Proof. We can write:

+00

Y

n>1

ﬂl(bl - bz) + (ﬂl + ﬂz)(bz - b3) + ...+ (ﬂl +ap+ ...+ ﬂn)(bn - bn_1) + ...

+00
Y (@1 + a4 o+ a,)(bn — bu)

nx1
+00
= Z An(bn = by41).
n>1
We can then see the series of general terms appear:
Up = An(bn - bn+1)- (143)

We just need to show that this series is convergent. Indeed:

|An(bn - bn+1)|
M(y, — by41), car b, — by = 0((by) is decreasing).  (1.44)

[0

IA

+00
The series Y, (b, — by+1) is convergent, since the sequence of its partial sums

nx1
is verified:
n
Z(bk — Ds1) = by — bup1 — by, asn — +oo. (1.45)
k=1
+00
The comparison theorem asserts the absolute convergence of the series ), v,,.
21
+00 !
It follows that the starting series ), u, is convergent. ]
n>1

1.3.2 Alternating series

Definition 1.3.1. An alternating series is any series whose general term

u, = (-1)"a,,a, >0, foralln € N. (1.46)

Convergence rule for alternating series

Proposition 1.3.2. (Leibniz criterion)

Let Y, uy be an alternating series. If (luy| is a sequence decreasing towards 0, then
n>0

(1.42)
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the series Y, u, is convergent, moreover we have:

n>0
+00
Y D

k=n+1

< Ui (1.47)

Proof. The series ), u, is alternating, so we can write:
n>0

Uy = Uy = a, X by, such thate b, = (-1)* and a, >0, foralln € N. (1.48)

n
Since |} br| < 1 and (Ju,| = a,) a sequence decreasing towards 0, the use of

k=0
Abel’s criterion shows the convergence of the series ), u,,.
n>0
Let now (S,) be the partial sum of the series ), u,, we then have
n>0
Son+2 = Son = Upso — U1 <0, (1.49)
52n+1 - SZn—l = —Upps1 + Uy = O, foralln € IN. (150)

So the sequence (Sy,) is decreasing and the sequence (S3,+1) is increasing.

Moreover we have:
Sons1 — Son = —Uppi1, for all n € N. (1.51)

Which shows that the sequence (S2,+1 — S2,) tends to 0. The sequences (Sz,,)
and (Sz,+1) are therefore adjacent and thus both converge to the same finite
limit S. Consequently the sequence (S,) converges to S, which shows once

again that the series ), u, converges. Furthermore, we have:

n>0
Sont1 £ 8 < Sousr = Sonst1 + Upuso, for all m € INL (1.52)
That is to say
S —S5,40 =< Uoyso, foralln € (1.53)
We also have
Sou — Uops1 = Sops1 £ S <8y, foralln € N, (1.54)

or in an equivalent manner:

—Uppy1 < S5-55,<0,foralln € IN. (1.55)
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It follows that, for alln € IN :

+00
Y Do =18 = Sl < i, (1.56)
k=n+1
where S is the sum of the series. O

1.3.3 Absolutely convergent series

Definition 1.3.2. A series with general term u,, is said to be absolutely convergent

if the series with general term |u,| converges.

Proposition 1.3.3. If the numerical series with general term u, converges abso-

lutely, then this series is convergent.

Proof. Suppose that the series of general term u, converges absolutely. Ap-
plying the Cauchy criterion to the series of general term |u,|, we find:

p

Ve >0, dnp €N, Vp,g €N, p > g = ny, we have Z lug| < €. (1.57)
k=q+1
On the other hand, we have:
p p
Y < Y lwl<e. (1.58)
k=q+1 k=q+1

The series of the general term u, then verifies the Cauchy criterion. This

series is therefore indeed convergent. o

Remak 1.4. The converse of this proposition is false. For example, the series with
n

general term converges, while it does not converge absolutely.

Proposition 1.3.4. Let )}, u, be a numerical series with arbitrary terms. Suppose
n=0
that there exists a positive numerical sequence verifying:

dny € N, VYn > ng, we have |u,| < v, (1.59)
then, if Y, v, converges, Y, u, converges absolutely.
n=0 n>0

Proof. The proof proceeds immediately, using the comparison theorem of

series with positive terms. O
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1.3.4 Semi-convergent series

Definition 1.3.3. A series with general term u,, is said to be semi-convergent, when

it converges without being absolutely convergent.
We also have the following immediate properties:

Proposition 1.3.5. Suppose that the two series of respective general terms u, and
v, are absolutely convergent (respectively semi-convergent), then the sum series
of general term (u, + v,) is absolutely convergent (respectively semi-convergent),
and the series produced by a scalar of general term au, is absolutely convergent

(respectively semi-convergent), for all a € k(k = R or C).

Proof. The proof of this proposition proceeds immediately using the Cauchy

O

criterion.

—1)"
Example 1.3.1. It can be easily shown that the alternating Riemann series ), .,

n=1 n¢ ’

a€Ris:
* divergent for all « < 0,
* absolutely convergent, for all « > 1,

* semi-convergent, forall 0 < @ < 1.

1.3.5 Additional properties of series convergent

Property 1: Use of the D’Alembert and Cauchy criteria

We know that these two criteria apply a priori to series with positive terms.

Let ). u, be a series with of arbitray sign. We can therefore perfectly use
n=0
these criteria with any series of terms, but we must be very careful not to

forget the absolute values.
Un+1

Let us now suppose that I; = lim,—+c

I, = limy,_, 100 V|u,| exists).
*If I < 1 (respect. I, < 1), the D’Alembert criterion (resp. the Cauchy

exists (respectively

n

criterion) asserts that the series ). |u,| is convergent. The }, u, is then
n>0 n>0
absolutely convergent.
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*If I; > 1 (respect. I, > 1), the D’Alembert criterion (resp. the Cauchy

criterion) asserts that the general term |u,| tends to +co. The series ) u, is
n>0
then divergent.

(3n+1

3n
) a", a € R
n+1

Example 1.3.2. Consider the series of general term u, =
and n > 0.
We have limy,— .o V|un| = 27 |a| . the Cauchy criterion states that:

1 . o
1. If |la| < 57 the considered series is absolutely convergent.
1
2. 1. Iflal > 77 the considered series is divergent.

1
3. If1. If o] = 57 the value absolute of general term becomes

» |_(3n+1)3”_(1
" \3n+3)

3n
- 3) — exp(=2)(# 0), when n — +oo,

and the considered series is divergent.

Property 3: Use of Limited Developments

By performing a limited development of the general term u, of the series

Y. uy, in the neighborhood of infinity at a sufficiently high order (to have an
n>0
absolutely convergent remainder), we can quickly conclude on the nature of

this series.
(-1)"

m. We can éwrite:

As an example, the series of general term u,, =

(-1 1
x _.
" 1+ (=)
n

(1.60)

Uy =

in the

By performing the limited development of the function x 1 j—x

neighborhood of 0, we obtain:

L= ﬂ 1_ﬂ+1e(n)
n n n
_ = 12 N (—12)"6(71), ol e(1) — 0, when 1 — +o0. (1.61)
n n n

We therefore have the sum of two convergent series and an absolutely con-

vergent remainder. The considered series is therefore convergent.
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1.4 Cauchy product of series

Definition 1.4.1. We consider two numerical series with general terms u, and v,,
respectively. We call the Cauchy product of these two series the series with general

term:
n

Wy = 2 WOy, (1.62)
k=0
Proposition 1.4.1. Let }, u, and }, u, be two absolutely convergent series. Then
n=0 n=0

the Cauchy product series with general term defined by (1.62) is absolutely conver-

gent, and moreover, we have:

Y w, = [Z un] X [Z un] : (1.63)

n>0 n>0 n>0
Proof. For all n € N, Let us consider the following partial sums:

n n

Su=) u,Ty=) vyandR, = Z W, (1.64)
k=0

k=0 k=0
Let us also consider the following notations:
S= Z lty| and T = Z [0l (1.65)
n>0 n>0
The two sequences (5,) and (T}, are convergent, so they satisfy the following

Cauchy criterion:

P P
Ye>0, dng € N, Vp,n € N, p > n > ny, we have Z | < e and Z Uk < €,
k=n+1 k=n+1
)
On the one hand, Ry, — S,, T, can be rewritten in the form:
RZn - SnTn = u0(0n+1 +..+ UZn) + Z’ll(vn+1 +..t UZn—l) + ot Up-10n41

+Uo(un+1 + ...+ Mzn) + vl(u,,+1 + ...+ uZn—l) + .o+ U1 U

Forall p,n € N, p > n > ny, we then have

IRoy = SyTol - < e[Zw Zm]
k=0 k=0
< eS+T). (1.67)
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So (Ryy) is convergent, and furthermore, we have:

;11_1>er Ry, = hm ST, [Z u,,] X [Z un]. (1.68)

n>0

On the other hand, for all n > ny, we have:

[Ron+1 — Ronl [(toV2n41 + oo + Up10y) + (Volona1 + oo + Vp1 )

IA

e(S+1), (1.69)

which ensures the convergence of (Rp;+1).

Since (Ry,) and (Ro,4+1) are convergent, (R,) is also convergent, and moreover:

Tim Ry = lim Ry = lim Ry, = [Z un] % [Z unJ. (1.70)

n>0 n>0

That is to say:

[2 w] . [Z un]x[z ]

n>0 n>0

1.5 Exercises about chapter 1

Exercise 1.5.1. Show that the following numerical series are convergent and cal-

culate their sums:

400 +00 +00
1 n? cos(nx)
)y — 3 -1y —="2 xeR.
1);:2”(”-1) );”l >n§=0< I, x

Exercise 1.5.2. Study the nature of the following numerical series:
+00 1 +00 1 +0c0 o
1);nsm(7—l) 2);arctan(ﬁ) 3);m (a>0)

e TS o

. o T exp(inx)
7)Zﬁsm ©), GE[O’E] g) PV R,

n
n>1
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Exercise 1.5.3. Let O be a real number. Study, according to the value of 0, the
absolute convergence, the semi-convergence and the divergence of the following

numerical series:

O (-1 (20— 1\
1)2(;19) ’ Z)Zf(nn+1) 0" )Z nec-ic-)sc(:s)(n)

n=1 n=
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