
COMPUTER ARCHITECTURE

2nd Year Computer science

Abdelhafid Boussouf University Center
2025-2026

MIPS R3000 Assembly Language

1

What is Assembly Language?
 Low-level programming language for a computer

 One-to-one correspondence with the machine instructions

 Assembly language is specific to a given processor

 Assembler: converts assembly program into machine code

 Assembly language uses:

 Mnemonics: to represent the names of low-level machine instructions

 Labels: to represent the names of variables or memory addresses

 Directives: to define data and constants

 Macros: to facilitate the inline expansion of text into other code
2

Overview of the MIPS Architecture

Memory

Up to 232 bytes = 230 words

 4 bytes per word

$0

$1

$2

$31

Hi Lo

ALU

F0

F1

F2

F31
FP

Arith

EPC

Cause

BadVaddr

Status

EIU FPU

TMU

Execution &

Integer Unit

(Main proc)

 Floating

Point Unit

(Coproc 1)

Trap &

Memory Unit

(Coproc 0)

. . .

. . .

Integer
mul/div

Arithmetic &

Logic Unit

32 General

Purpose

Registers

Integer

Multiplier/Divider

32 Floating-Point

Registers

Floating-Point

Arithmetic Unit

Assembly Language Statements
 Three types of statements in assembly language

 Typically, one statement should appear on a line

1. Executable Instructions

 Generate machine code for the processor to execute at runtime

 Instructions tell the processor what to do

2. Pseudo-Instructions and Macros

 Translated by the assembler into real instructions

 Simplify the programmer task

3. Assembler Directives

 Provide information to the assembler while translating a program

 Used to define segments, allocate memory variables, etc.

 Non-executable: directives are not part of the instruction set

4

Assembly Language Instructions
 Assembly language instructions have the format:

[label:] mnemonic [operands] [#comment]

 Label: (optional)

 Marks the address of a memory location, must have a colon

 Typically appear in data and text segments

 Mnemonic

 Identifies the operation (e.g. add, sub, etc.)

 Operands

 Specify the data required by the operation

 Operands can be registers, memory variables, or constants

 Most instructions have three operands

L1: addiu $t0, $t0, 1 #increment $t0 5

Comments
 Single-line comment

 Begins with a hash symbol # and terminates at end of line

 Comments are very important!

 Explain the program's purpose

 When it was written, revised, and by whom

 Explain data used in the program, input, and output

 Explain instruction sequences and algorithms used

 Comments are also required at the beginning of every procedure

 Indicate input parameters and results of a procedure

 Describe what the procedure does 6

Program Template

main program entry

Exit program

.data

.text

li $v0, 10 syscall

Data section

Text section

7

.DATA & .TEXT Directives

 .DATA directive

 Defines the data segment of a program containing data

 The program's variables should be defined under this directive

 Assembler will allocate and initialize the storage of variables

 .TEXT directive

 Defines the code segment of a program containing instructions

8

Data Definition Statement
 The assembler uses directives to define data

 It allocates storage in the static data segment for a variable

 May optionally assign a name (label) to the data

 Syntax:

[name:] directive initializer [, initializer] . . .

var1: .WORD 10

 All initializers become binary data in memory
9

Data Directives
 .BYTE Directive

 Stores the list of values as 8-bit bytes

 .HALF Directive

 Stores the list as 16-bit values aligned on half-word boundary

 .WORD Directive

 Stores the list as 32-bit values aligned on a word boundary

 .FLOAT Directive

 Stores the listed values as single-precision floating point

 .DOUBLE Directive

 Stores the listed values as double-precision floating point 10

String Directives

 .ASCII Directive

 Allocates a sequence of bytes for an ASCII string

 .ASCIIZ Directive

 Same as .ASCII directive, but adds a NULL char at end of string

 Strings are null-terminated, as in the C programming language

 .SPACE Directive

 Allocates space of n uninitialized bytes in the data segment

11

Examples of Data Definitions
.DATA

var1: .BYTE 'A', 'E', 127, -1, '\n'

var2: .HALF -10, 0xffff

var3: .WORD 0x12345678:100

var4: .FLOAT 12.3, -0.1

var5: .DOUBLE 1.5e-10

str1: .ASCII "A String\n"

"NULL Terminated String" str2: .ASCIIZ

array: .SPACE 100

Array of 100 words

Initialized with the

same value

100 bytes (not initialized)
12

Instruction Categories

 Integer Arithmetic

 Arithmetic, logic, and shift instructions

 Data Transfer

 Load and store instructions that access memory

 Data movement and conversions

 Jump and Branch

 Flow-control instructions that alter the sequential sequence

13

LOAD /STORE Instructions

14

C
o

re

r1

r32

.

.

.

0

1

.

.

.

10

100

.

.

.

Address Data

lw $t0, 1($a0)

Memory[$a0 + 1] LOAD From the Memory

LOAD /STORE Instructions

15

LOAD /STORE Instructions

🞍 Memory reads are called loads

🞍 Mnemonic: load word (lw)

Example: read a word of data at memory address 1 into $s3

🞍 Memory address calculation:

 add the base address ($0) to the offset (1)

 address = ($0 + 1) = 1

 $s3 holds the value 0xF2F1AC07
after the instruction completes

🞍 Any register may be used to store the base address

 lw $s3, 1($0) # read memory word 1 into $s3

LOAD From the Memory

16

C
o

re

r1

r32

.

.

.

0

1

.

.

.

10

100

.

.

.

Address Data

sw $t0, 1($a0)

Memory[$a0 + 1]

LOAD /STORE Instructions

STORE into the memory

17

LOAD /STORE Instructions
STORE into the memory

• Memory writes are called stores

🞍 Mnemonic: store word (sw)

🞍 Example: Write (store) the value held in $t4 into memory address 7

🞍 Memory address calculation:

 add the base address ($0) to the offset (7)

 address = ($0 + 7) = 7

 Offset can be written in
decimal (default) or hexadecimal

🞍 Any register may be used to store
the base address

sw $t4, 0x7($0) # write the value

to memory word 7

18

LOAD /STORE Instructions
STORE into the memory

 Li - Load immediate -

Li Rdest, Imm
Exemple:

Li $t0, 23
• La - Load address-

 La Rdest, adress

 Copy of Register
Move Rdest, Rsrc

 # $t1 =42

19

System Calls
• Programs do input/output through system calls

• The MIPS architecture provides a syscall instruction

– To obtain services from the operating system

– The operating system handles all system calls requested by program

• Since MARS is a simulator, it simulates the syscall services

• To use the syscall services:

– Load the service number in register $v0

– Load argument values, if any, in registers $a0, $a1, etc.

– Issue the syscall instruction

– Retrieve return values, if any, from result registers

Syscall Services
Service $v0 Arguments / Result

Print Integer 1 $a0 = integer value to print

Print Float 2 $f12 = float value to print

Print Double 3 $f12 = double value to print

Print String 4 $a0 = address of null-terminated string

Read Integer 5 Return integer value in $v0

Read Float 6 Return float value in $f0

Read Double 7 Return double value in $f0

Read String 8
$a0 = address of input buffer

$a1 = maximum number of characters to read

Allocate Heap

memory
9

$a0 = number of bytes to allocate

Return address of allocated memory in $v0

Exit Program 10

Reading and Printing an Integer
################# Code segment #####################

.text

 li $v0, 5 # Read integer

 syscall # $v0 = value read

 move $a0, $v0 # $a0 = value to print

 li $v0, 1 # Print integer

 syscall

 li $v0, 10 # Exit program

 syscall

Reading and Printing a String
################# Data segment #####################

.data

 str: .space 10 # array of 10 bytes

################# Code segment #####################

.text

 la $a0, str # $a0 = address of str

 li $a1, 10 # $a1 = max string length

 li $v0, 8 # read string

 syscall

 li $v0, 4 # Print string str

 syscall

 li $v0, 10 # Exit program

 syscall

Arithmetic instructions

 add, sub: arithmetic overflow causes an exception

 In case of overflow, result is not written to destination register

 addu, subu: arithmetic overflow is ignored

 addu, subu: compute the same result as add, sub

 Many programming languages ignore overflow

 The + operator is translated into addu

 The – operator is translated into subu

Instruction Meaning Op Rs Rt Rd sa func

add $t1, $t2, $t3 $t1 = $t2 + $t3 0 $t2 $t3 $t1 0 0x20

addu $t1, $t2, $t3 $t1 = $t2 + $t3 0 $t2 $t3 $t1 0 0x21

sub $t1, $t2, $t3 $t1 = $t2 – $t3 0 $t2 $t3 $t1 0 0x22

subu $t1, $t2, $t3 $t1 = $t2 – $t3 0 $t2 $t3 $t1 0 0x23

24

 add $0, $1, $2

add: operation, $0: Destination, $1 & $2: Source(s)

Most of the arithmetic/logical: two sources and one destination

Arithmetic instructions

25

Constants and Immediate

x=x+10

addi $s0, $s0, 10

i: immediate, for constants
constant: 16 bits.

No need of a register

Arithmetic instructions

26

 Consider the translation of: f = (g+h)–(i+j)

 Programmer / Compiler allocates registers to variables

 Given that: $t0=f, $t1=g, $t2=h, $t3=i, and $t4=j

 Called temporary registers: $t0=$8, $t1=$9, …

 Translation of: f = (g+h)–(i+j)

addu $t5, $t1, $t2

addu $t6, $t3, $t4

subu $t0, $t5, $t6

$t5 = g + h

$t6 = i + j

f = (g+h)–(i+j)

Arithmetic instructions

27

Shift Instructions

 Shifting is to move the 32 bits of a number left or right

 sll means shift left logical (insert zero from the right)

 srl means shift right logical (insert zero from the left)

 sra means shift right arithmetic (insert sign-bit)

 The 5-bit shift amount field is used by these instructions

shift-in 0 . . .
sll

shift-out

32-bit value

. . .
srl

shift-in 0 shift-out

. . .
sra

shift-in sign-bit shift-out

28

Logic Bitwise Instructions

Instruction Meaning Op Rs Rt Rd sa func

and $t1, $t2, $t3 $t1 = $t2 & $t3 0 $t2 $t3 $t1 0 0x24

or $t1, $t2, $t3 $t1 = $t2 | $t3 0 $t2 $t3 $t1 0 0x25

xor $t1, $t2, $t3 $t1 = $t2 ^ $t3 0 $t2 $t3 $t1 0 0x26

nor $t1, $t2, $t3 $t1 = ~($t2|$t3) 0 $t2 $t3 $t1 0 0x27

 Examples:

Given: $t1 = 0xabcd1234 and $t2 = 0xffff0000
and $t0, $t1, $t2 # $t0 = 0xabcd0000

or $t0, $t1, $t2 # $t0 = 0xffff1234

xor $t0, $t1, $t2 # $t0 = 0x54321234

nor $t0, $t1, $t2 # $t0 = 0x0000edcb

29

Branching

■ Allows a program to execute instructions out of sequence

■ Conditional branches

 branch if equal: beq

 branch if not equal: bne

■ Unconditional branches

 jump: j,b

 jump register: jr

 jump and link: jal

30

Conditional Branching

31

Conditional Branching (beq)

MIPS assembly
addi $s0, $0, 4
addi $s1, $0, 1
sll $s1, $s1, 2
beq $s0, $s1, target
addi $s1, $s1, 1
sub $s1, $s1, $s0

target:
add $s1, $s1, $s0

Labels indicate instruction locations in a program. They cannot use
reserved words and must be followed by a colon (:).

Blackboard

32

MIPS assembly
addi $s0, $0, 4 # $s0 = 0 + 4 = 4
addi $s1, $0, 1 # $s1 = 0 + 1 = 1
sll $s1, $s1, 2 # $s1 = 1 << 2 = 4
beq $s0, $s1, target # branch is taken
addi $s1, $s1, 1 # not executed
sub $s1, $s1, $s0 # not executed

target: add
 $s1,

$s1,

$s0

label
$s1 = 4 + 4 = 8

Labels indicate instruction locations in a program. They cannot use
reserved words and must be followed by a colon (:).

Conditional Branching (beq)

33

MIPS assembly
addi $s0, $0, 4 # $s0 = 0 + 4 = 4
addi $s1, $0, 1 # $s1 = 0 + 1 = 1
sll $s1, $s1, 2 # $s1 = 1 << 2 = 4
bne $s0, $s1, target # branch not taken
addi $s1, $s1, 1 # $s1 = 4 + 1 = 5
sub $s1, $s1, $s0 # $s1 = 5 – 4 = 1

target:
add $s1, $s1, $s0 # $s1 = 1 + 4 = 5

The Branch Not Taken (bne)

34

MIPS assembly
addi $s0, $0, 4 # $s0 = 4
addi $s1, $0,
j target

1 #

$s1 = 1
jump to target

sra $s1, $s1, 2 # not executed
addi $s1, $s1, 1 # not executed
sub $s1, $s1, $s0 # not executed

target:
add

$s1,

$s1,

$s0

$s1

= 1 + 4 = 5

Unconditional Branching / Jumping (j)

35

Unconditional Branching (jr)

MIPS assembly
0x00002000 addi $s0, $0, 0x2010 # load 0x2010 to $s0
0x00002004 jr $s0 # jump to $s0
0x00002008 addi $s1, $0, 1 # not executed
0x0000200C sra $s1, $s1, 2 # not executed
0x00002010 lw $s3, 44($s1) # program continues

36

High-Level Code Constructs

■ if statements

■ if/else statements

■ while loops

■ for loops

37

If Statement

if (i == j) f =
g + h;

f = f – i;

$s0 = f, $s1 = g, $s2 = h #
$s3 = i, $s4 = j

High-level code MIPS assembly code

38

If / Else Statement

$s0 = f, $s1 = g, $s2 = h
$s3 = i, $s4 = j

if (i == j) bne $s3, $s4, L1
f = g + h; add $s0, $s1, $s2

else j done
f = f – i; L1:

done:
sub $s0, $s0, $s3

High-level code MIPS assembly code

39

■ Notice that the assembly tests for the opposite case (i != j)
than the test in the high-level code (i == j)

While Loops

// determines the power
// of x such that 2x = 128
int pow = 1;
int x = 0;

while (pow != 128) {
pow = pow * 2;
x = x + 1;

}

$s0 = pow, $s1 = x

High-level code MIPS assembly code

40

While Loops

// determines the power
// of x such that 2x = 128
int pow = 1;
int x = 0;

while (pow != 128) { pow

= pow * 2;
x = x + 1;

}

$s0 = pow, $s1 = x

addi $s0, $0, 1 add
 $s1, $0, $0 addi
$t0, $0, 128

while: beq $s0, $t0, done sll
 $s0, $s0, 1 addi
$s1, $s1, 1
j while

done:

High-level code MIPS assembly code

■ Notice that the assembly tests for the opposite case (pow
== 128) than the test in the high-level code (pow != 128)

41

For Loops

The general form of a for loop is:

for (initialization; condition; loop operation)

loop body

■ initialization: executes before the loop begins

■ condition: is tested at the beginning of each iteration

■ loop operation: executes at the end of each iteration

■ loop body: executes each time the condition is met
42

For Loops

// add the numbers from 0 to 9
int sum = 0;
int i;

for (i = 0; i != 10; i = i+1) { sum

= sum + i;
}

$s0 = i, $s1 = sum

High-level code MIPS assembly code

43

For Loops

// add the numbers from 0 to 9
int sum = 0;
int i;

for (i = 0; i != 10; i = i+1) { sum

= sum + i;
}

$s0 = i, $s1 = sum
addi $s1, $0, 0 add
 $s0, $0, $0
addi $t0, $0, 10

for: beq $s0, $t0, done add
 $s1, $s1, $s0 addi
$s0, $s0, 1
j for

done:

High-level code MIPS assembly code

■ Notice that the assembly tests for the opposite case (i == 10)
than the test in the high-level code (i != 10)

44

// add the powers
// to 100

of 2 from 1 # $s0 = i, $s1 =
addi $s1,

sum
$0,

0
int sum = 0; addi $s0, $0, 1
int i; addi $t0, $0, 101

for (i = 1; i < 101; i = i*2) {
loop: slt

beq
$t1,
$t1,

$s0, $t0
$0, done

sum = sum
}

+ i;

done:

add
sll j

$s1,
$s0,
loop

$s1, $s0
$s0, 1

High-level code MIPS assembly code

■ $t1 = 1 if i < 101

45

Less Than Comparisons

■ Useful for accessing large amounts of similar data

■ Array element: accessed by index

■ Array size: number of elements in the array

46

Arrays

■ 5-element array

■ Base address = 0x12348000
(address of the first array element, array[0])

■ First step in accessing an array:

 Load base address into a register

array[4]

array[3]

array[2]

array[1]

array[0]

0x12340010

0x1234800C

0x12348008

0x12348004

0x12348000

47

Arrays

// high-level code
int array[5];
array[0] = array[0] * 2;
array[1] = array[1] * 2;

MIPS assembly code
array base address = $s0

Initialize $s0 to 0x12348000

High-level code MIPS Assembly code

48

Arrays

// high-level code
int array[5];
array[0] = array[0] * 2;
array[1] = array[1] * 2;

MIPS assembly code
array base address = $s0

Initialize $s0 to 0x12348000
lui $s0, 0x1234 # upper $s0
ori $s0, $s0, 0x8000 # lower $s0

High-level code MIPS Assembly code

49

Arrays

Arrays

// high-level code
int array[5];
array[0] = array[0] * 2;
array[1] = array[1] * 2;

MIPS assembly code
array base address = $s0

Initialize $s0 to 0x12348000

upper $s0 lui $s0, 0x1234
ori $s0, $s0, 0x8000 # lower $s0

lw
sll
sw

$t1,
$t1,
$t1,

0($s0)
$t1, 1
0($s0)

$t1=array[0]
$t1=$t1*2
array[0]=$t1

lw $t1, 4($s0) # $t1=array[1]
sll $t1, $t1, 1 # $t1=$t1*2
sw $t1, 4($s0) # array[1]=$t1

High-level code MIPS Assembly code

50

Arrays Using For Loops

// high-level code int
arr[1000]; int i;

for (i = 0; i < 1000; i = i + 1)

arr[i] = arr[i] * 8;

$s0 = array base, $s1 = i
upper $s0 lui $s0, 0x23B8

ori $s0, $s0, 0xF000 # lower $s0

High-level code MIPS Assembly code

51

Arrays Using For Loops

// high-level code int
arr[1000]; int i;

for (i = 0; i < 1000; i = i + 1)

arr[i] = arr[i] * 8;

$s0 = array base, $s1 = i
upper $s0 lui $s0, 0x23B8

ori $s0, $s0, 0xF000 # lower $s0

addi $s1, $0, 0 # i = 0
addi $t2, $0, 1000 # $t2 = 1000

loop:
slt $t0, $s1, $t2 # i < 1000?
beq $t0, $0, done # if not done
sll $t0, $s1, 2 # $t0=i * 4
add $t0, $t0, $s0 # addr of arr[i]
lw $t1, 0($t0) # $t1=arr[i]
sll $t1, $t1, 3 # $t1=arr[i]*8
sw $t1, 0($t0) # arr[i] = $t1
addi
j

$s1,
loop

$s1, 1 #

i = i + 1
repeat

done:

High-level code MIPS Assembly code

52

Procedures

// High level code
void main()
{
int y;
y = sum(42, 7);
...

}

int sum(int a, int b)
{

return (a + b);
}

■ Definitions

 Caller: calling procedure (in this case, main)

 Callee: called procedure (in this case, sum)

53

Procedure Calling Conventions

■ Caller:

 passes arguments to callee

 jumps to the callee

■ Callee:

 performs the procedure

 returns the result to caller

 returns to the point of call

 must not overwrite registers or memory needed by the caller

54

MIPS Procedure Calling Conventions

■ Call procedure:

 jump and link (jal)

■ Return from procedure:

 jump register (jr)

■ Argument values:

 $a0 - $a3

■ Return value:

 $v0

55

Procedure Calls

int main() {
simple(); a =
b + c;

}

void simple() {

return;
}

0x00400200 main: jal simple
0x00400204 add $s0,$s1,$s2

...
0x00401020 simple: jr $ra

High-level code MIPS Assembly code

■ void means that simple doesn’t return a value

56

Procedure Calls

int main() {
simple(); a =
b + c;

}

void simple() {

return;
}

0x00400200 main: jal simple
0x00400204 add $s0,$s1,$s2

...
0x00401020 simple: jr $ra

High-level code MIPS Assembly code

■ jal: jumps to simple and saves PC+4 in the return
address register ($ra)

 In this case, $ra = 0x00400204 after jal executes

■ jr $ra: jumps to address in $ra

 in this case jump to address 0x00400204
57

Input Arguments and Return Values

■ MIPS conventions:

 Argument values: $a0 - $a3

 Return value: $v0

58

Input Arguments and Return Values

MIPS assembly code #
$s0 = y

main:
...

addi $a0, $0, 2
addi $a1, $0, 3
addi $a2, $0, 4
addi $a3, $0, 5

argument 0 = 2
argument 1 = 3
argument 2 = 4
argument 3 = 5 #
call procedure
y = returned value

jal diffofsums
add $s0, $v0, $0
... # $s0 = result

diffofsums:
add $t0, $a0, $a1
add $t1, $a2, $a3
sub $s0, $t0, $t1
add $v0, $s0, $0 jr
 $ra

$t0 = f + g #
$t1 = h + i
result = (f + g) - (h + i) #
put return value in $v0
return to caller

// High-level code
int main()
{
int y;
...
// 4 arguments
y = diffofsums(2, 3, 4, 5);
...

} int diffofsums(int f, int g,
int h, int i)

{
int result;
result = (f + g) - (h + i);
return result; // return value

}

59

Input Arguments and Return Values

$s0 = result
diffofsums:

add $t0, $a0, $a1 # $t0 = f + g
add $t1, $a2, $a3 # $t1 = h + i
sub $s0, $t0, $t1 # result = (f + g) - (h + i)
add $v0, $s0, $0 # put return value in $v0
jr $ra # return to caller

■ diffofsums overwrote 3 registers: $t0, $t1, and $s0

■ diffofsums can use the stack to temporarily store registers
(comes next)

60

The Stack

■ Memory used to temporarily save
variables

■ Like a stack of dishes, last-in-first- out
(LIFO) queue

■ Expands: uses more memory when
more space is needed

■ Contracts: uses less memory when the
space is no longer needed

61

The Stack

■ Grows down (from higher to lower memory addresses)

■ Stack pointer: $sp, points to top of the stack

Data

7FFFFFFC

7FFFFFF8

7FFFFFF4

7FFFFFF0

12345678

Address

$sp 7FFFFFFC

7FFFFFF8

7FFFFFF4

7FFFFFF0

Address Data

12345678

AABBCCDD

11223344 $sp

62

How Procedures use the Stack

MIPS assembly # $s0 = result
diffofsums:

add $t0, $a0, $a1 # $t0 = f + g
add $t1, $a2, $a3 # $t1 = h + i
sub $s0, $t0, $t1 # result = (f + g) - (h + i)
add $v0, $s0, $0 # put return value in $v0
jr $ra # return to caller

■ Called procedures must have no other unintended side
effects

■ But diffofsums overwrites 3 registers: $t0, $t1, $s0

63

Storing Register Values on the Stack

$s0 = result
diffofsums:

addi $sp, $sp, -12 # make space on stack
to store 3 registers

sw $s0, 8($sp) # save $s0 on stack
sw $t0, 4($sp) # save $t0 on stack
sw $t1, 0($sp) # save $t1 on stack
add $t0, $a0, $a1 # $t0 = f + g
add $t1, $a2, $a3 # $t1 = h + i
sub $s0, $t0, $t1 # result = (f + g) - (h + i)
add $v0, $s0, $0 # put return value in $v0
lw $t1, 0($sp) # restore $t1 from stack
lw $t0, 4($sp) # restore $t0 from stack
lw $s0, 8($sp) # restore $s0 from stack
addi $sp, $sp, 12 # deallocate stack space
jr $ra # return to caller

64

