COMPUTER ARCHITECTURE

2"d Year Computer science
Chapiterl:

“-‘Introduction to computer architecture

Abdelhafid Boussouf University Center 1
2025-2026

What Is Computer Architecture?

Computer architecture refers to the end-to-end
structure of a computer system that determines how
its components interact with each other in helping
to execute the machine’s purpose (i.e., processing
data).

What Is Computer Architecture?

The science and art of designing, selecting, and

interconnecting hardware components and
designing the hardware/software interface to create
a computing system that meets functional,
performance, energy consumption, cost, and other
specific goals.

Components of a Computer System

Computer
= Processor p
M
Datapath and Control G?OW
1/0 Devices
* Memory & Storage
Main Memory B
Disk St Processor U @]
isk Storage o
. Datapath Disk
= Input / Output devices [: T

v

User-interface devices Network

Network adapters

= For communicating with other computers

= Bus: Interconnects processor to memory and 1/0

= Essentially the same components for all kinds of computers °

Classes of Computers

= Personal computers

General purpose, variety of software, subject to cost/performance
= Server computers

Network based, high capacity, performance, and reliability

Range from small servers to building sized
= Supercomputers

High-end scientific and engineering calculations

Highest capability but only a small fraction of the computer market
= Embedded computers

Hidden as components of systems

Stringent power/performance/cost constraints

Classes of Computers

= Personal Mobile Device (PMD)

Battery operated
Connects to the Internet
Low price: hundreds of dollars

Smart phones, tablets, electronic glasses

= Cloud Computing
Warehouse Scale Computers (WSC)
Software, Platform, and Infrastructure as a Service
However, security concerns of storing "sensitive data" in "the cloud"

Examples: Amazon and Google

Von Neumann Architecture and Harvard Architecture

Program Memory

©
I

Input/Output Devices

Input/OQutput Devices

Von Neumann Architecture

Harvard Architecture

History: Oth Generation — Mechanical

=1834-71: Analytical Engine
designed by Charles Babbage

= Mechanical gears, where each
gear represented a discrete
value (0-9)

"Programs provided as
punched cards

=Never finished due to
technological restrictions

History: 15t Generation - Vacuum Tubes

= 1945-55: first machines
were created (Atanasoff—
Berry, Z3, Colossus, ENIAC)

s All programming in pure
machine language Logic Unit

=Connecting boards and

wires, punched cards
(later)

=Stored program concept

=1955-65: era of mainframes
(e.g. IBM 7094) used in large
companies

mProgramming in assembly
language and FORTRAN

=Batch systems (IO was
separated from calculations)

=Punched cards and magnetic
tape

= oaders (OS ancestors)

History: 3" Generation — Integrated Circuits

=1965-1980: computer lines
using the same instruction set
architecture (e.g. IBM 360)

"First operating systems (e.g.

0S/360, MULTICS) Job 3 iy
=" Multiprogramming and o

timesharing Job 2 cartitions
=Computer as utility Job 1
"Programming languages and Ovperatin

compilers (LISP, BASIC, C) :ystemg

History: 4" Generation — VLS| and PC

= 1980—Present: personal computers,
laptops, servers (Apple, IBM, etc.) 3

= Architectures: x86-64, Itanium, ARM,‘
MIPS, PowerPC, SPARC, RISC-V, etc. E 2

" Operating systems: UNIX (System V

and BSD), MINIX, Linux, MacQS, DOS,
Windows (NT)

=|SA (CISC, RISC, VLIW), caches,
pipelines, SIMD, vectors,
hyperthreading, multicore

History: 5" Generation — Mobile devices

=1990-Present: mobile devices,
embedded systems, loT devices

= Custom processors and FPGAs

= Mobile operating systems:
Symbian, iOS, Android,
Windows Mobile

=Real-time operating systems

Technology Trends

=Electronics technology " o
continues to evolve ... T
Increased capacity and | **
performance x W
Reduced cost B
Year |Technology Relative performance/cost
1951 |Vacuum tube 1
1965 |Transistor 35
1975 |Integrated circuit (IC) 900
1995 | Very large scale IC (VLSI) 2,400,000
2013 |Ultralarge scale IC 250,000,000,000 @

Moore’s Law

=Gordon Moore (1929-...) cofounded Intel in 1968

with Robert Noyce

=Moore’s Law: number of transistors on a computer

chip doubles every year (observed in 1965)
= Limited by power consumption

=Slowed down since 2010 @

Single Core Performance

Intel Core i7 4 cores 4.2 GHz (Boost to 4.5 GHz)

i Core i7 4 4.0 GHz (Boost o 4.2 GHz)
Move to mUItlcore Inlelcmeﬂlme?msGNz(Bo(ianAzoGHz))
tel Xeon 4 cores 3.7 GHz (Boost to 4.1 GHz)
100,000 InlelXeonl:oves:iGGHx(BoosnolOGH)

Intel Xeon 4 cores 3.6 GHz (Boost to 4.0 GHz)
(el Core i7 4 cores 3.4 GHz (boost 1o 3.8 GHz)
Intel Scoms 3.3 GHz (boost 10 3.6 GHz)
Intel Xeon 4 & 3 GHz (boost 10 3.6 GHz,
Intel Core i7 Extreme 4 cores 3.
10 Intel Core AQMEDHm 2cores 20CHz | o 98-S
000 +———————-——— e 64,28 GHz —_ B2
' MO Athign, 26 GHz <
Intel Xeon
Intel DBSOEMVR motherboard (3.06 GHz, Pentium 4 processor with Hyper-Threading Technology) g8,
IBM Powerd, 1.3 GHz @7 4,
Intel VC820 motherboard, 1.0 GHz Pentium Il processor o/~
Professional Workstaion XP1000, 667 WHz 21
1000 +——-—————m 75. 575 MHz 21264
Digital Alphastation 4/266, 266 MHz
O s it S8 POWERSR 100, 150 M1z
Digital 3000 AXP/500, 150 MHz
HP 9000/750, 66 MHz
1BM RS6000/540, 30 MHz
MIPS M2000, 25 MHz
MIPS W120, 16.7 MHz g
10 iR, o7 Wi w5
VAX 8700, 22 MHz g5
AX-11/780, 5 MHz
’ 25%lyear

T T T T 1 T T T T T T T T T T T T
1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 ?{12 2014 2016 2018

Memory Performance Gap

100,000

(0, () — NS ————— IR

1000_ ...

FOO e e e e e e e

Performance

10 e e g

1 4 T T T T T T
1980 1985 1990 1995 2000 2005 2010 2015

Year

Current Challenges

=Single core performance improvement has ended
More powerful microprocessor might not help
=" Memory-efficient programming
Temporal locality
Spatial locality
=Parallelism to improve performance
Data-level parallelism
Thread-level parallelism
Request-level parallelism
=Performance tuning require changes in the application

Everything is Bits

mFach bitisOor 1

=By encoding/interpreting sets of bits in various ways
Computers determine what to do (instructions)
... and represent and manipulate numbers, sets, strings, etc...
=\Why bits? Electronic implementation

Easy to store with bistable elements
Reliably transmitted on noisy and inaccurate wires

0 | 1

1.1v
0.9v

0.2v
0.0v

Number Systems

mDecimal numbers

uwin|oo s,000T
uwinjo2 s,00T
uwn|oo s,0T
uwn|oo s, T

5374,,=5x10%+3x10%+7 x 10" + 4 x 10°

five three seven four
thousands hundreds tens ones

=Binary numbers

@ ANR

w nnon

0O 000

90990

c ccc

3333

3 333

1101, =1x23+1x2240x 21 +1x20=13
one one no one
eight four two one

=20=1 = 28 =256
=21=2 = 2% =512
=22=4 = 210=1024
=23=8 = 211=2048
= 24=16 = 212 = 4096
= 25=32 = 213=8192
= 26=64 = 214=16384
= 27=128 = 215=32768

[21
Number Conversion

= Decimal to binary conversion:
Convert 10011, to decimal

= Decimal to binary conversion:
Convert 47, to binary

11

Binary Values and Range

= N-digit decimal number
How many values? 10V
Range? [0, 10" - 1]
Example: 3-digit decimal number:
= 103 = 1000 possible values
= Range: [0, 999]
= N-bit binary number
How many values? 2V
Range: [0, 2V - 1]
Example: 3-digit binary number:

= 23 = 8 possible values
= Range: [0, 7] = [000, to 111,]

Encoding Byte Values

=Byte = 8 bits
Binary 000000002 t0 11111111,
Decimal: 010 to 25510
Hexadecimal 0016 to FF16
= Base 16 number representation
= Use characters ‘0’ to ‘9" and ‘A’ to ‘F
= Write FA1D37B16 in C as

* OxFA1D378B
* Oxfald37b

12

Bits, Bytes, Nibbles...

“Bits 10010110

most least
significant significant
bit bit
byte

\

=Bytes & Nibbles 5_0010110

L
nibble

=Bytes CEBFOADY

L]
most least
significant significant

byte byte e

Hexadecimal Numbers

Hex Digit Decimal Equivalent Binary Equivalent
= Base 16 0 0 0000
1 1 0001
= Shorthand for 2 2 0010
bl na ry 3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111 @

13

Hexadecimal to Binary Conversion

= Hexadecimal to binary conversion:
Convert 4AF (also written Ox4AF) to binary

= Hexadecimal to decimal conversion:
Convert 4AF,, to decimal

ASCII Code

Dec HxOct Char Dec Hx Oct Html Chr
0 0 000 WUL (null) 32 20 040 s#32; Space
1 1 001 S0H (start of heading) 33 21 041 «#33;

2 2 002 STX (start of text) 34 22 04z «#34: "

3 3 003 ETX (end of text) 35 23 043 &«#35; #

4 4 004 EOT (end of transmission) 36 24 044 $ 5

5 5 005 ENQ (enquiry) 37 25 045 &«#37; %

6 6 006 ACK (acknowledge) 38 26 D46 «#38: <

7 7 007 BEL (bell) 39 27 047 «#39;

8 8 010 ES (backspace) 40 28 050 (

9 9 011 TAB (horizontal tab) 41 29 051))
10 A 0lz LF (NL line feed, new line)| 42 2A 052 &«#42: *
11l B 013 VT (wertical tab) 43 2B 053 +: +
lz C 014 FF (NP form feed, new page)| 44 2C 054 s#%44; ,
13 D 015 CR (carriage return) 45 2D 055 -:; -
14 E 016 S0 (shift out) 46 ZE 056 «#46; .
15 F 017 5I (shift in) 47 2F 057 «#47: /
16 10 020 DLE (data link escape) 48 30 060 <#48; 0
17 11 021 DC1l (device control 1) 49 31 D61 1: 1
18 12 022 DC2 (dewice control 2) 50 32 062 «#50: 2
19 13 023 DC3 (device control 3) 51 33 063 3 3
20 14 024 DC4 (device control 4) 52 34 064 <#52; 4
21 15 025 NAK (negative acknowledge) 53 35 065 «#53: 5
22 16 026 SYN (synchronous idle) 54 36 066 «#54: 6
23 17 027 ETE (end of trans. block) 55 37 067 &«#55: 7
24 18 030 CAN (cancel) 56 38 070 s#56; O
25 19 031 EM (end of medium) 57 39 071 <«#57; 9
26 1A 032 SUB (substitute) 58 3A 072 «#58: :
27 1B 033 ESC (escape) 59 3B 073 &«#59; ;
28 1C 034 F3 (file separator) 60 3C 074 «#60; <
29 1D 035 G5 (group separator) 61 3D 075 <#61; =
30 1lE 036 RS (record separatokr) 62 3E 076 >: >
31 1F 037 U3 (unit separator) 63 3F 077 <#63; 7

100
1ol
1oz
103
104
105
106
107
110
111
llz
113
114
115
116
117
1za0
1z1
122
123
1z4
1z5
126
127
130
131
13z
133
134
135
136
137

@
A
&HBE
&H¥67;
D
sH69 2
«#70;
&#TL:
sWTZ;
&#T3:
874
K2
&#T6;
&#TT 2
#7782
O:
&#B80;
&#B8Ll;2
&#BZ;
&#¥B32
T
U
&#B6 2
&#B7;
&#B6;
&#B9;
#9002
	L;:
	Z ;2
]
^
_

s NS ddHuToRoEEEROHTIOHADONE®

107
108
109
110
111
112
113
114
115
116
117
118
119
1z0
121
l1z22
123
1z4
125
1z6

127

140
141
14z
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177

` 2
“#97
#9858
&«#99;
«#100;
#1011
#1022
“#¥103;
s¥104;
#1105
#1106
<#107;
&¥108;
m
#1110
&#¥111:;
S#112:
#1133
&¥ll4;
&«¥115;
#1116
#1177
«#118;
&¥119;
&«#120;
#1121
z
#1123
#1224
&#¥125;
&¥126;
#1127

| Dec Hx Oct Html Chr

t~—m N XS4 EAURRTONErRAURFQRORODTD

DEL

14

Below Your Program

= Application software

Written in high-level language

=System software

Compiler: translates high-level
language code to machine code

Operating System: service code

= Handling input/output

= Managing memory and storage
= Scheduling tasks & sharing resources

"Hardware
CPU, memory, |I/O controllers

Programmer’s View of a Computer System

-

Software <

Interface {
SW & HW

Hardware

Application Programs
High-Level Language

Assembly Language

Operating System

Instruction Set
Architecture

Microarchitecture

Physical Design

Increased level of
abstraction

A

v

Each level hides
the details of the
level below it

15

Programmer’s View of a Computer System

= Application Programs (Level 5)

Written in high-level programming languages

Such as Java, C++, Pascal, Visual Basic . . .

Programs compile into assembly language level (Level 4)
= Assembly Language (Level 4)

Instruction mnemonics (symbols) are used

Have one-to-one correspondence to machine language

Calls functions written at the operating system level (Level 3)

Programs are translated into machine language (Level 2)
= Operating System (Level 3)

Provides services to level 4 and 5 programs

Translated to run at the machine instruction level (Level 2) @

Programmer’s View of a Computer System

= |Instruction Set Architecture (Level 2)
Interface between software and hardware
Specifies how a processor functions
Machine instructions, registers, and memory are exposed
Machine language is executed by Level 1 (microarchitecture)
= Microarchitecture (Level 1)
Controls the execution of machine instructions (Level 2)
Implemented by digital logic
= Physical Design (Level 0)
Implements the microarchitecture at the transistor-level

Physical layout of circuits on a chip

16

A Hierarchy of Languages

Machine independent

Machine specific

Application Programs

High-Level Languages

High-Level Language

Low-Level Language

Assembly Language

Machine Language

Hardware

Assembly and Machine Language

= High-level language

Level of abstraction closer to

problem domain

Provides productivity and portability

= Machine language

Native to a processor: executed directly by hardware

Instructions consist of binary

= Assembly language

Slightly higher-level language

code: 1s and Os

Readability of instructions is better than machine language

One-to-one correspondence with machine language instructions

= Assemblers translate assembly to machine code

= Compilers translate high-level programs to machine code

Either directly, or

Indirectly via an assembler

17

Compiler and Assembler

High-level languages

Assembly language

Machine language

Translating Languages

Program (C Language):

swap (int v[], int k) {
int temp;
temp = v[k];
v[k] = v[k+1l];
v[k+1l] = temp;

}

Compiler

MIPS Assembly Language:

sll $2,%5, 2
add $2,%4,%2
1w $15,0($2)
1w $16,4($2)
sw $16,0($2)
sw $15,4($2)

Assembler

>

jr $31

A statement in a high-level
language is translated typically
into several machine-level
instructions

MIPS Machine Language:

00051080
00821020
8C620000
8CF20004
ACF20000
AC620004
03E00008

18

Advantages of High-Level Languages

= Program development is faster

High-level statements: fewer instructions to code
= Program maintenance is easier

For the same above reasons
= Programs are portable

Contain few machine-dependent details

= Can be used with little or no modifications on different machines

Compiler translates to the target machine language

However, Assembly language programs are not portable

Why Learn Assembly Language?

= Many reasons:
Accessibility to system hardware

Space and time efficiency
Writing a compiler for a high-level language

= Accessibility to system hardware
Assembly Language is useful for implementing system software
Also useful for small embedded system applications

= Programming in Assembly Language is harder
Requires deep understanding of the processor architecture
However, it is very rewarding to system software designers

Adds a new perspective on how programs run on real processors

19

Assembly Language Programming Tools

= Editor
Allows you to create and edit assembly language source files
= Assembler
Converts assembly language programs into object files
Object files contain the machine instructions
= Linker
Combines object files created by the assembler with link libraries
Produces a single executable program
= Debugger
Allows you to trace the execution of a program

Allows you to view machine instructions, memory, and registers

Assemble and Link Process

Source Object
File Assembler File
/1/
/1/ .
Source Object
File Assembler File
/1/ /‘L
I - Link
Source Object o
File Assembler =l Libraries
/1/ /‘L

« A program may consist of multiple source files
+ Assembler translates each source file into an object file
+ Linker links all object files together and with link libraries

+ The result executable file can run directly on the processor

Executable
File

20

»
AR ASsembpler ang ATOr 100

S —
B c\Users\mudawar\Documents\+COE 301\Tools\MARS\Fibonacci.asm - MARS 4.5

File Edit Run Settings Tools Help

Run speed at max (no interaction)
—_— 1)

Registers | Coproc1 | Coproco
| Name Number Value
| = == g .
| sat 1 1]
2 svo El 1]
3 fibs: 0 sv1 3 of
4 size: .word 12 # 2a0 4 [
5 sa1 s [
6 la $t0, fibs # Joad a = : 2
7 1a $ts, size # Toad a sto B o
3 Tw $t5, 0CHEESD # Toad ar STl Bl of
=] 1 2z, 1 # 1 is T =2 i o
10 add.d $f0, $fz2, 374 sta 12| ol
11 sw Ft2, 0CEtOd # sts 13 o
1z sw +tz2, 4CEtod # £t6 14 o
13 addi $til, $t5, -2 # = e °
14 Toop: Tw 3, 0CHEOD # 521 17 of
15 Tw Ft4, 4CEtod # £s2 18] [
16 add $tz2, $t3, $t4 # £33 19 a
17 sw $t2, 8CHEOD # o2 = °
18 addi $to, %to, 4 # 536 22 o
19 addi $ti, $tl, -1 # £a7 23 o
20 bgtz $t1, loop # sta 24 o
21 1a $a0, Tibs # et > °
22 add %$al, %$zero, $t5 # w1 EE °
23 jal print # sap 28| 268468224,
24 11 $vo, 10 # ssp 235 2147473548
25 syscall # s£p 30 ol
[«1] I zza 31
Line: 1 Column: 1 Show Line Numbers hi
== 1o
Mars Messages | RunlO |
]

K/
L X4

K/
L X4

e

A

K/
L X4

DX

K/
L X4

MARS Assembler and Simulator Tool

Simulates the execution of a MIPS program

<> No direct execution on the underlying Intel processor
Editor with color-coded assembly syntax
<> Allows you to create and edit assembly language source files
Assembler
<> Converts MIPS assembly language programs into object files
Console and file input/output using system calls
Debugger
<> Allows you to trace the execution of a program and set breakpoints
<> Allows you to view machine instructions, edit registers and memory

Easy to use and learn assembly language programming

