
1

COMPUTER ARCHITECTURE

2nd Year Computer science

Abdelhafid Boussouf University Center
2025-2026

1

Chapiter1:

Introduction to computer architecture

2

What Is Computer Architecture?

 Computer architecture refers to the end-to-end
structure of a computer system that determines how
its components interact with each other in helping
to execute the machine’s purpose (i.e., processing
data).

2

3

What Is Computer Architecture?

 The science and art of designing, selecting, and

interconnecting hardware components and
designing the hardware/software interface to create
a computing system that meets functional,
performance, energy consumption, cost, and other
specific goals.

Components of a Computer System

 Processor

 Datapath and Control

Memory & Storage

 Main Memory

 Disk Storage

 Input / Output devices

 User-interface devices

 Network adapters
 For communicating with other computers

 Bus: Interconnects processor to memory and I/O

 Essentially the same components for all kinds of computers

Computer

Memory

I/O Devices

Input

Output
B
U
S

Control

Datapath

 Processor

Disk

Network

4

3

Classes of Computers

 Personal computers

 General purpose, variety of software, subject to cost/performance

 Server computers

 Network based, high capacity, performance, and reliability

 Range from small servers to building sized

 Supercomputers

 High-end scientific and engineering calculations

 Highest capability but only a small fraction of the computer market

 Embedded computers

 Hidden as components of systems

 Stringent power/performance/cost constraints

5

Classes of Computers
 Personal Mobile Device (PMD)

 Battery operated

 Connects to the Internet

 Low price: hundreds of dollars

 Smart phones, tablets, electronic glasses

 Cloud Computing

 Warehouse Scale Computers (WSC)

 Software, Platform, and Infrastructure as a Service

 However, security concerns of storing "sensitive data" in "the cloud"

 Examples: Amazon and Google

6

4

7

Von Neumann Architecture and Harvard Architecture

Von Neumann Architecture Harvard Architecture

1834–71: Analytical Engine
designed by Charles Babbage

Mechanical gears, where each
gear represented a discrete
value (0-9)

Programs provided as
punched cards

Never finished due to
technological restrictions

8

History: 0th Generation – Mechanical

5

1945–55: first machines
were created (Atanasoff–
Berry, Z3, Colossus, ENIAC)

All programming in pure
machine language

Connecting boards and
wires, punched cards
(later)

Stored program concept

 9

History: 1st Generation - Vacuum Tubes

Input

Output

Memory

Arithmetical /
Logic Unit

Control Unit

1955–65: era of mainframes
(e.g. IBM 7094) used in large
companies
Programming in assembly

language and FORTRAN
Batch systems (IO was

separated from calculations)
Punched cards and magnetic

tape
Loaders (OS ancestors)

10

History: 2nd Generation - Transistors

6

1965–1980: computer lines
using the same instruction set
architecture (e.g. IBM 360)
First operating systems (e.g.

OS/360, MULTICS)
Multiprogramming and

timesharing
Computer as utility
Programming languages and

compilers (LISP, BASIC, C)
11

History: 3rd Generation – Integrated Circuits

Job 3

Job 2

Job 1

Operating
System

Memory
Partitions

1980–Present: personal computers,
laptops, servers (Apple, IBM, etc.)

Architectures: x86-64, Itanium, ARM,
MIPS, PowerPC, SPARC, RISC-V, etc.

Operating systems: UNIX (System V
and BSD), MINIX, Linux, MacOS, DOS,
Windows (NT)

ISA (CISC, RISC, VLIW), caches,
pipelines, SIMD, vectors,
hyperthreading, multicore

12

History: 4th Generation – VLSI and PC

7

1990–Present: mobile devices,
embedded systems, IoT devices

Custom processors and FPGAs

Mobile operating systems:
Symbian, iOS, Android,
Windows Mobile

Real-time operating systems

13

History: 5th Generation – Mobile devices

14

Technology Trends

Electronics technology
continues to evolve
 Increased capacity and

performance
Reduced cost

Memory capacity

8

Gordon Moore (1929-...) cofounded Intel in 1968

with Robert Noyce

Moore’s Law: number of transistors on a computer

chip doubles every year (observed in 1965)

Limited by power consumption

Slowed down since 2010
15

Moore’s Law

16

Single Core Performance

Constrained by power, instruction-level parallelism, memory latency

Move to multicore

9

17

Memory Performance Gap

Single core performance improvement has ended
More powerful microprocessor might not help

Memory-efficient programming
Temporal locality
Spatial locality

Parallelism to improve performance
Data-level parallelism
Thread-level parallelism
Request-level parallelism

Performance tuning require changes in the application
18

Current Challenges

10

Each bit is 0 or 1
By encoding/interpreting sets of bits in various ways
 Computers determine what to do (instructions)
… and represent and manipulate numbers, sets, strings, etc…

Why bits? Electronic implementation
 Easy to store with bistable elements
 Reliably transmitted on noisy and inaccurate wires

19

Everything is Bits

0.0V

0.2V

0.9V

1.1V

0 1 0

20

Number Systems

Decimal numbers

Binary numbers

5374
10

 = 5 × 103 + 3 × 102 + 7 × 101 + 4 × 100

five

thousands

1
0

's
 c

o
lu

m
n

1
0

0
's

 c
o

lu
m

n

1
0

0
0

's
 c

o
lu

m
n

three

hundreds

seven

tens

four

ones

1
's

 c
o

lu
m

n

1101
2
 = 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 = 13

10
one

eight

2
's

 c
o

lu
m

n

4
's

 c
o

lu
m

n

8
's

 c
o

lu
m

n

one

four

no

two

one

one

1
's

 c
o

lu
m

n

11

 20 = 1

 21 = 2

 22 = 4

 23 = 8

 24 = 16

 25 = 32

 26 = 64

 27 = 128

21

Powers of Two

 28 = 256

 29 = 512

 210 = 1024

 211 = 2048

 212 = 4096

 213 = 8192

 214 = 16384

 215 = 32768

 Decimal to binary conversion:
 Convert 100112 to decimal

 Decimal to binary conversion:
 Convert 4710 to binary

22

Number Conversion

12

N-digit decimal number
How many values? 10N
Range? [0, 10N - 1]
Example: 3-digit decimal number:

 103 = 1000 possible values
 Range: [0, 999]

N-bit binary number
How many values? 2N
Range: [0, 2N - 1]
Example: 3-digit binary number:

 23 = 8 possible values
 Range: [0, 7] = [0002 to 1112]

23

Binary Values and Range

Byte = 8 bits
Binary 000000002 to 111111112

Decimal: 010 to 25510

Hexadecimal 0016 to FF16
Base 16 number representation

Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’

Write FA1D37B16 in C as
• 0xFA1D37B

• 0xfa1d37b

24

Encoding Byte Values

13

25

Bits, Bytes, Nibbles…

Bits

Bytes & Nibbles

Bytes

10010110
least

significant

bit

most

significant

bit

10010110
nibble

byte

CEBF9AD7
least

significant

byte

most

significant

byte

 Base 16

 Shorthand for
binary

26

Hexadecimal Numbers
Hex Digit Decimal Equivalent Binary Equivalent

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

14

 Hexadecimal to binary conversion:
 Convert 4AF16 (also written 0x4AF) to binary

 Hexadecimal to decimal conversion:
 Convert 4AF16 to decimal

27

Hexadecimal to Binary Conversion

ASCII Code

28

15

Application software
Written in high-level language

System software
Compiler: translates high-level

language code to machine code
Operating System: service code
Handling input/output

Managing memory and storage

 Scheduling tasks & sharing resources

Hardware
CPU, memory, I/O controllers 29

Below Your Program

Programmer’s View of a Computer System

Application Programs

High-Level Language

Assembly Language

Operating System

Instruction Set
Architecture

Microarchitecture

Physical Design Level 0

Level 1

Level 2

Level 3

Level 4

Level 5 Increased level of

abstraction

Each level hides

the details of the

level below it

Software

Hardware

Interface

SW & HW

30

16

Programmer’s View of a Computer System

 Application Programs (Level 5)

 Written in high-level programming languages

 Such as Java, C++, Pascal, Visual Basic . . .

 Programs compile into assembly language level (Level 4)

 Assembly Language (Level 4)

 Instruction mnemonics (symbols) are used

 Have one-to-one correspondence to machine language

 Calls functions written at the operating system level (Level 3)

 Programs are translated into machine language (Level 2)

 Operating System (Level 3)

 Provides services to level 4 and 5 programs

 Translated to run at the machine instruction level (Level 2)
31

Programmer’s View of a Computer System

 Instruction Set Architecture (Level 2)

 Interface between software and hardware

 Specifies how a processor functions

 Machine instructions, registers, and memory are exposed

 Machine language is executed by Level 1 (microarchitecture)

 Microarchitecture (Level 1)

 Controls the execution of machine instructions (Level 2)

 Implemented by digital logic

 Physical Design (Level 0)

 Implements the microarchitecture at the transistor-level

 Physical layout of circuits on a chip

32

17

A Hierarchy of Languages

Application Programs

High-Level Languages

Assembly Language

Machine Language

Hardware

High-Level Language

Low-Level Language

Machine independent

Machine specific

Assembly and Machine Language
 High-level language

 Level of abstraction closer to problem domain

 Provides productivity and portability

 Machine language

 Native to a processor: executed directly by hardware

 Instructions consist of binary code: 1s and 0s

 Assembly language

 Slightly higher-level language

 Readability of instructions is better than machine language

 One-to-one correspondence with machine language instructions

 Assemblers translate assembly to machine code

 Compilers translate high-level programs to machine code

 Either directly, or

 Indirectly via an assembler

18

Compiler and Assembler

36

Translating Languages

MIPS Assembly Language:

sll $2,$5, 2

add $2,$4,$2

lw $15,0($2)

lw $16,4($2)

sw $16,0($2)

sw $15,4($2)

jr $31

Compiler

Program (C Language):

swap(int v[], int k) {

 int temp;

 temp = v[k];

 v[k] = v[k+1];

 v[k+1] = temp;

}

A statement in a high-level

language is translated typically

into several machine-level

instructions

MIPS Machine Language:

00051080

00821020

8C620000

8CF20004

ACF20000

AC620004

03E00008

Assembler

19

Advantages of High-Level Languages
 Program development is faster

 High-level statements: fewer instructions to code

 Program maintenance is easier

 For the same above reasons

 Programs are portable

 Contain few machine-dependent details

 Can be used with little or no modifications on different machines

 Compiler translates to the target machine language

 However, Assembly language programs are not portable
37

Why Learn Assembly Language?

 Many reasons:

 Accessibility to system hardware

 Space and time efficiency

 Writing a compiler for a high-level language

 Accessibility to system hardware

 Assembly Language is useful for implementing system software

 Also useful for small embedded system applications

 Programming in Assembly Language is harder

 Requires deep understanding of the processor architecture

 However, it is very rewarding to system software designers

 Adds a new perspective on how programs run on real processors
38

20

Assembly Language Programming Tools

 Editor

 Allows you to create and edit assembly language source files

 Assembler

 Converts assembly language programs into object files

 Object files contain the machine instructions

 Linker

 Combines object files created by the assembler with link libraries

 Produces a single executable program

 Debugger

 Allows you to trace the execution of a program

 Allows you to view machine instructions, memory, and registers

Assemble and Link Process
Source

File

Source

File

Source

File

Assembler
Object

File

Assembler
Object

File

Assembler
Object

File

Linker
Executable

File

Link

Libraries

 A program may consist of multiple source files

 Assembler translates each source file into an object file

 Linker links all object files together and with link libraries

 The result executable file can run directly on the processor 40

21

MARS Assembler and Simulator Tool

MARS Assembler and Simulator Tool
 Simulates the execution of a MIPS program

 No direct execution on the underlying Intel processor

 Editor with color-coded assembly syntax

 Allows you to create and edit assembly language source files

 Assembler

 Converts MIPS assembly language programs into object files

 Console and file input/output using system calls

 Debugger

 Allows you to trace the execution of a program and set breakpoints

 Allows you to view machine instructions, edit registers and memory

 Easy to use and learn assembly language programming

42

