Chapitre 2

Logique des prédicats

Introduction

Si on prend le fameux syllogisme :

Tout homme est mortel Socrate est un homme Alors Socrate est mortel

Avec la logique propositionnelle, on ne peut pas exprimer ce syllogisme avec précision.

Le langage des prédicats a les éléments et les outils qui nous permettent de représenter ce genre d'énoncés.

Langage des prédicats

1. L'alphabet :

- Les connecteurs logiques : ☐ , ∧ , ∨ , → , ↔
- Les quantificateurs : \forall , \exists
- Les variables : x , y , ...
- Les constantes : a , b , ...
- Les symboles de prédicats : P , Q , ...
- Les symboles de fonctions : f , g , ...

2. Les fonctions

C'est une généralisation des fonctions numériques sur n'importe quel domaine D (personnes, villes, ...).

Exemples:

- D = R : $f(x) = x^2$
- D = l'ensemble des humains : g(x) = père(x)
- D = N : h(x,y) = PGCD(x,y)

Le résultat de la fonction est un élément du même domaine

3. Les prédicats

C'est une propriété d'un élément du domaine ou une relation entre les éléments du domaine.

Exemples:

- P(x): x est un nombre premier
- Q(x,y): x > y

La valeur du prédicat est booléenne V ou F.

4. Les quantificateurs

- Le quantificateur universel ∀ (quelque soit)
- Le quantificateur existentiel ∃ (il existe au moins)

Exemple:

Si on a : P(x) : x est présent , A(x) : x est absent

 $\forall x \ P(x)$: Tout les étudiants sont présents

 $\exists x \ A(x)$: Il existe des étudiants absents

5. Les termes

- Toute constante est un terme
- Toute variable est un terme
- Si t_1 , ... t_n sont des termes et f est une fonction alors : $f(t_1, \ldots t_n)$ est un terme.

6. Les formules

- Si t_1 , ..., t_n sont des termes et P est un prédicat alors : $P(t_1, ..., t_n)$ est une formule.
- Si x est une variable et α , β deux formules alors : $\exists \alpha$, $\alpha \land \beta$, $\alpha \lor \beta$, $\alpha \to \beta$, $\alpha \leftrightarrow \beta$, $\forall x \alpha$, $\exists x \alpha$ sont des formules.

Exemples de formules

$$\forall x \ P(x) \land \exists y \ Q(y) \rightarrow P(x) \ , \ \forall x \ \forall y \ \exists z \ (P(x,y) \rightarrow Q(x,y,z))$$

Priorité des connecteurs + quantificateurs :

$$\exists, \land, \lor, (\exists, \forall), \rightarrow, \leftrightarrow$$

Système complet

Même définition dans le chapitre 1, sauf qu'on ajoute les quantificateurs à l'ensemble des connecteurs

Exemple:
$$S = \{ \rceil, \rightarrow, \forall \}$$

On a déjà montré que $\{ \ \ , \rightarrow \}$ est un système complet il reste à trouver la relation entre \exists et \forall . on a les propriétés suivantes:

$$\exists x \alpha = \forall x \exists \alpha \quad \text{et} \quad \forall x \alpha = \exists x \exists \alpha$$

Le champ d'un quantificateur

Le champ d'un quantificateur dans une formule est la sous formule concernée par ce quantificateur

Exemple: $\forall x P(x) \land \exists y Q(y) \rightarrow P(x)$

- Le champ de ∃ est Q(y)
- Le champ de \forall est $P(x) \land \exists y \ Q(y)$

Les variables libres et les variables liées

- Une occurrence de x dans une formule α est liée si elle apparait dans le champ d'un quantificateur, sinon elle est libre
- ♦ Une variable est liée si elle a au moins une occurrence liée
- ♦ Une variable est libre si elle a au moins une occurrence libre

Exemple:

- \bullet P(x) \to Q(y,z) toutes les variables sont libres
- ♦ $\forall x P(x) \land Q(y)$ x est liée et y est libre

La formule close

C'est la formule dont toutes les variables sont liées et non libres

Exemple : $\forall x \ \forall y \ \exists z \ (P(x,y) \rightarrow Q(x,y,z))$

L'interprétation

Pour donner une valeur de vérité à une formule, il faut donner une signification à tous les symboles de la formule (prédicats, fonctions, constantes) ainsi que le domaine des variables.

Exemple 1 : $\alpha = \forall x \exists y P(x,y)$, D= N

- Si P signifie < alors α est vraie
- Si P signifie > alors α est fausse

L'évaluation

L'évaluation d'une formule consiste à donner une valeur pour chaque variable libre de la formule.

L'attribution d'une valeur de vérité à une formule, nécessite une interprétation et une évaluation de la formule.

Exemple: $\beta = P(x,f(x))$

Soit l'interprétation I tel que I(P) : « = » et I(f) : carré de ...

- Si x = 2 alors β est fausse
- Si x = 1 alors β est vraie

Satisfiabilité

Une formule α est satisfiable s'il existe une interprétation I et une évaluation v, pour lesquelles α est vraie. On dit que l'évaluation v satisfait α pour l'interprétation I. et on écrit $I \models \alpha_v$.

Exemple : $\alpha = P(f(x,y),y)$, tel que :

$$D=N$$
 , $I(P)=">"$, $I(f)="-"$, $v(x)=4$, $v(y)=1$

$$I(\alpha)_{v} = I(P(f(x,y),y))$$

$$= I(P) (I(f(x,y),v(y)))$$

$$= I(P) (I(f) (v(x),v(y)),v(y))$$

$$= > (-(4,1),1) = > (3,1)$$

Un ensemble de formules Γ est satisfiable s'il existe une interprétation I et une évaluation v, pour lesquelles les formules de Γ sont toutes vraies.

Modèle d'une formule

On dit que l'interprétation I est un modèle de la formule α , si toute évaluation satisfait α pour l'interprétation I. On note I $\models \alpha$

Exemple 1 :
$$I(P) = ">"$$
 , $I(f) = "le double de ..." , $D=N^*$
I est un modèle de $P(f(x),x)$$

Exemple 2:
$$\alpha = P(x,y)$$
, $I(P) = "...$ diviseur de...", $D = \{1, 2\}$

	V ₁	V 2	V 3	V 4
X	1	1	2	2
У	1	2	1	2
α	V	V	F	V

On dit que α est satisfiable mais I n'est pas modèle de α

Exemple 3 : D={2,6} , I(P) = "... diviseur de... " , I(Q) ="... multiple de ... "
$$\alpha=\forall x\ P(x,y)$$
 , $\beta=\forall x\ \exists y\ Q(x,y)$

	V ₁	V 2	V 3	V 4
Х	2	2	6	6
У	2	6	2	6
P(x,y)	V	V	F	٧
Q(x,y)	V	F	V	V

$$I \not\models \alpha \quad I \models \beta.$$

On dit que l'interprétation I est un modèle de l'ensemble Γ , si toute évaluation satisfait Γ pour l'interprétation I. On note I $\models \Gamma$

Validité d'une formule

Une formule α est valide si elle est vraie pour toute interprétation I, et toute évaluation v . On note $\models \alpha$.

Exemple :
$$\beta = P(x) \vee P(x)$$

Pour démontrer qu'une formule n'est pas valide, il suffit de trouver une interprétation et/ou une évaluation pour lesquelles la formule est fausse.

Conséquence logique

On dit que β est conséquence logique de Γ (on note $\Gamma \models \beta$), ssi pour toute interprétation I et toute évaluation v, on a :

Si
$$I \models \Gamma_{V}$$
 alors $I \models \beta_{V}$

Exemple:
$$\forall x (\alpha \rightarrow \beta)$$
, $\forall x \alpha \models \forall x \beta$

Formes normales

1- Forme normale prénexe

On dit que α est sous la forme prénexe si :

- α est de la forme : $Q_1x_1 \dots Q_nx_n \beta$ telque : $Q_i \in \{ \forall, \exists \}$
- Le champ de Q_nx_n est β
- β ne contient pas des quantificateurs.

Pour transformer les formules en forme normale prénexe, on se base sur les propriétés suivantes :

$$\forall x \ \alpha \to \beta \equiv \exists x \ (\alpha \to \beta)$$
 Sous condition : x n'apparait pas libre dans β
$$\exists x \ \alpha \to \beta \equiv \forall x \ (\alpha \to \beta)$$

$$\begin{array}{c} \alpha \to \forall x \; \beta \equiv \forall x \; (\alpha \to \beta) \\ \alpha \to \exists x \; \beta \equiv \exists x \; (\alpha \to \beta) \end{array}$$
 Sous condition : x n'apparait pas libre dans α

Exemple: $\exists x \ P(x) \rightarrow \exists y \ P(y) \dots (1)$

x n'apparait pas libre dans $\exists y \ P(y)$

$$(1) \equiv \forall x (P(x) \rightarrow \exists y P(y))$$

y n'apparait pas libre dans P(x)

$$(1) \equiv \forall x \exists y (P(x) \rightarrow P(y))$$

Remarque : Si les conditions posées pour les propriétés ne sont pas satisfaites, on procède à des modifications selon les règles suivantes :

$$\begin{array}{ll} \bullet & \forall x \; \beta \equiv \forall y \; \beta_{(y/x)} \\ \bullet & \exists x \; \beta \equiv \exists y \; \beta_{(y/x)} \end{array} \end{array} \qquad \text{On obtient } \beta_{(y/x)} \; \text{par remplacement de } x \; \text{par } y$$

Exemple : Transformer en forme normale prénexe :

$$\exists x \ P(x,y) \rightarrow \exists y \ Q(y,x)$$

- x apprait libre dans « $\exists y Q(y,x)$ », on change la variable
- $\equiv \exists u \ P(u,y) \rightarrow \exists y \ Q(y,x)$
 - ♦ u n'apprait pas libre dans « ∃y Q(y,x) »
- $\equiv \forall u (P(u,y) \rightarrow \exists y Q(y,x))$
 - ◆ y apprait libre dans « P(u,y) », on change la variable
- $\equiv \forall u (P(u,y) \rightarrow \exists v Q(v,x))$
 - ♦ u n'apprait pas libre dans « P(u,y) »
- $\equiv \forall u \exists v (P(u,y) \rightarrow Q(v,x))$

2- Forme normale de Skolem

Elle consiste à éliminer tous les quantificateurs existentiels en utilisant de nouveaux symboles de fonction ou des constantes tout en conservant la satisfiabilité de la formule.

Etant donné : $\alpha = \forall x \exists y \ P(x,y)$ cette formule veut dire que pour chaque x il existe un y qui vérifie P(x,y), c-a-d, on peut définir une fonction f(x) qui remplacera y dans la formule.

La forme de skolem de α est donc : $\alpha_s = \forall x \ P(x,f(x))$

Exemple 1 :
$$\beta = \forall x_1 \ \forall x_2 \ \exists y \ P(x_1,x_2,y)$$

$$\beta_s = \forall x_1 \ \forall x_2 \ P(x_1,x_2,f(x_1,x_2))$$

Pour une formule de la forme $\exists x \ \beta$, on élimine le quantificateur et on remplace x par une nouvelle constante.

Exemple 2:
$$\alpha = \exists x \ P(x) \Rightarrow \alpha_s = P(a)$$

Remarques:

- la skolémisation d'une formule suppose qu'elle est sous la forme prénexe.
- La skolémisation d'une formule ne donne pas une formule équivalente.

Exemple 3:
$$\alpha = \exists x \ \forall y \ \forall z \ \exists v \ P(x,y,z,v)$$

 $\alpha_s = \forall y \ \forall z \ p(a,y,z,f(y,z))$