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Exercise No. 1 :
Matrix Multiplication : Let A =

(
ai j

)
∈ Mm,n(K) and B =

(
bi j

)
∈ Mn,p(K). The product (or

multiplication) of A and B, denoted A · B, is the matrix C =
(
ci j

)
1≤i≤m
1≤ j≤p

∈ Mm,p(K), where each entry

ci j is defined by

∀(i, j) ∈ {1, 2, ...,m} ×
{
1, 2, ..., p

}
: ci j =

n∑
k=1

aikbkj = ai1b1 j + ai2b2 j + ... + ainbnj.

In other words, the entry ci j of the product A ·B is obtained by summing the products of the entries
from the i − th row of A with the corresponding entries from the j − th column of B. This can also
be interpreted as the dot product of the i − th row of A and the j − th column of B.

Matrix multiplication is defined if and only if the number of columns of the first matrix is equal
to the number of rows of the second matrix. This condition is given by the following rule

Matrix of size (m × n) · Matrix of size
(
n × p

)
= Matrix of size

(
m × p

)
.

1. (a) Computing A2 and A3 (Powers of a Square Matrix or Matrix Powers).
We have

A2 = A · A =

0 1 0
0 0 1
0 0 0

 ·
0 1 0
0 0 1
0 0 0

 =
0 0 1
0 0 0
0 0 0

 .
and

A3 = A2
· A =

0 0 0
0 0 0
0 0 0

 = O3

where O3 is the zero matrix of order 3 . Hence, for all integers n ≥ 3, we have

An = An−3
· A3 = An−3

·O3 = O3 (1)

2. (a) Explicit Form of M(x). For all x ∈ R, we have

M(x) = I3 + xA +
x2

2
A2

=

1 0 0
0 1 0
0 0 1

 + x ·

0 1 0
0 0 1
0 0 0

 + x2

2
·

0 0 1
0 0 0
0 0 0

 =
1 x 1

2x2

0 1 x
0 0 1


Thus, the explicit form of M(x) is

M(x) =

1 x 1
2x2

0 1 x
0 0 1

 .
(b) (j) Let x, y ∈ R, then

M(x) ·M(y) =
(
I3 + xA +

x2

2
A2

)
·

(
I3 + yA +

y2

2
A2

)



2

= I2
3 + yA +

y2

2
A2 + xA + xyA2 +

xy2

2
A3 +

x2

2
A2 +

x2y
2

A3 +
x2y2

4
A4.

Using the identity 1 , we obtain

M(x) ·M(y) = I3 + yA +
y2

2
A2 + xA + xyA2 +

x2

2
A2 = I3 +

(
x + y

)
A +

(
xy +

x2

2
+

y2

2

)
A2

= I3 +
(
x + y

)
A +

1
2
(
x + y

)2 A2

=M(x + y).

Alternative Method : We have

M(x).M(y) =

1 x 1
2x2

0 1 x
0 0 1

 .
1 y 1

2 y2

0 1 y
0 0 1

 =
1 x + y xy + 1

2x2 + 1
2 y2

0 1 x + y
0 0 1


=

1 x + y 1
2

(
x + y

)2

0 1 x + y
0 0 1

 =M(x + y).

(jj) Let x ∈ R, then
M(x).M(x′) = I3 =⇒M(x + x′) = I3

where
I3 =M(0).

Therefore
M(x + x′) =M(0)

=⇒ x + x′ = 0

=⇒ x′ = −x ∈ R.

(jjj) Inverse of M(x). Let x ∈ R. The matrix M(x) is invertible if and only if there exists a matrix
B ∈ M3(R) such that

M(x) · B = B ·M(x) = I3.

Moreover, if M(x) is invertible, then B is unique and B =M−1(x). We have

M(x) ·M(−x) =M(x − x) =M(0) = I3

Therefore, the matrix M(x) is invertible and its inverse is

M−1(x) =M(−x) =

1 −x 1
2x2

0 1 −x
0 0 1

 .
Exercise No. 2 :
1. Recall that the transpose of a matrix satisfies the following properties

∀λ ∈ R,∀A,B ∈ Mn(R) :
{

t(A + B) =t A +t B
t(λ · A) = λ ·t A

In other words, the transpose operation is linear.
If A = (ai j) ∈ Mn(R), its transpose is defined as

tA = (a ji) ∈ Mn(R)

That is, each row becomes a column, and each column becomes a row in the transposed matrix.
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(a) For F1., the set of symmetric matrices.
(j) The zero matrix On satisfies tOn = On, so On ∈ F1.
(jj) Closed Under Linear Combinations : Let α, β ∈ R and A,B ∈ F1,then

tA = A,t B = B.

We obtain
t(αA + βB) = αtA + βtB = αA + βB ∈ F1.

So F1 is a vector subspace ofMn(R).
In the same way, we can show that F2, the set of antisymmetric matrices or Skew-Symmetric

matrices, is also a vector subspace ofMn(R).
2. We have  tB1 =

t
(

1
2 (tA + A)

)
= 1

2 (t(tA) +t A) = 1
2 (tA + A) = B1

tB2 =
t
(

1
2 (A −t A)

)
= 1

2 (tA −t (tA)) = 1
2 (tA − A) = −B2

=⇒

{
B1 ∈ F1

B2 ∈ F2
.

3. Decomposition of a Matrix into Symmetric and Antisymmetric Parts
We observe that any matrix A ∈ Mn(R) can be written as

A = B1 + B2 =
1
2

(tA + A) +
1
2

(A −t A),

with B1 ∈ F1 and B2. Then the decomposition of A is

A = B1 + B2

with

B1 =
1
2

(tA + A) =
1
2

(
(
1 2
3 4

)
+

(
1 3
2 4

)
) =

1
2

(
2 5
5 8

)
and

B2 =
1
2

(A −t A) =
1
2

(
(
1 3
2 4

)
−

(
1 2
3 4

)
) =

1
2

(
0 1
−1 0

)
.

Exercise No. 3 : Exercise No. 3 : Consider the linear mapping f defined by

f : R3
−→ R3

(x, y, z) 7−→ f (x, y, z) = (3x − y + z,−x − 2y − 5z, x + y + 3z)

Let B = {e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)} be the canonical (or standard) basis of R3.
1. Find the matrix A =Mat( f )

B
associated with f with respect to the basis B.

2. Let B′ =
{
e′1 = (−4, 1, 3), e′2 = (2, 0,−1), e′3 = (−1, 1, 1)

}
be a new basis of R3.

(a) Determine the change-of-basis matrix P from B to B′ and compute its inverse P−1.
(b) For the vector v = (1, 2,−1) ∈ R3, find the coordinates of v in the new basis B′.
(c) Compute the matrix A′ =Mat( f )

B′
associated with f with respect to the basis B′.

Solution :
1. The matrix associated with the linear mapping f , denoted by A =Mat

B
( f ), is the matrix of size

m × n where (m = dim(F = R3 = 3),n = dim(E = R3) = 3) and whose columns are the coordinates
of the vectors f (e1), f (e2) and f (e3) expressed in the basis B. That is

A =Mat
B

( f ) = =Mat
B

(
f (e1) f (e2) f (e3)

)
∈ M3(R).

where Mat
B

(
f (e1) f (e2) f (e3)

)
is the matrix associated with the family of vectors

{
f (e1), f (e2), f (e3)

}
.
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We compute the images of the basis vectors

f (e1) = f (1, 0, 0) = (3,−1, 1) = 3e1 − e2 + e3

f (e2) = f (0, 1, 0) = (−1,−2, 1) = −e1 − 2e2 + e3

f (e3) = f (0, 0, 1) = (1,−5, 3) = e1 − 5e2 + 3e3

From this, we conclude that the matrix of f in the canonical basis B is

A =Mat
B

( f ) =

 3 −1 1
−1 −2 −5
1 1 3

 .
2. (a) The change-of-basis matrix P from an old basis B to a new basis B′ (also called the

transition matrix), denoted P
B−→B′

, is the square matrix whose columns are the coordinates of the
vectors of the new basis expressed in the old basis B. That is

P = P
B−→B′

=Mat
B

(e′1, e
′

2, e
′

3) ∈ M3(R) (is the 3 × 3 square matrix),

where Mat
B

(·) denotes the matrix of a family of vectors with respect to the basis B. We get

P = P
B−→B′

=Mat
B

(e′1, e
′

2, e
′

3) =

 −4 2 −1
1 0 1
3 −1 1

 ∈ M3(R).

Compute P−1. The matrix P−1 is the change-of-basis matrix from the new basis B′ to the old basis
B. In other words

P−1 = P
B′−→B

=Mat
B′

(e1, e2, e3),

which means that the columns of P−1 are the coordinates of the vectors e1, e2, e3 in the basis B′.
Therefore, for each vector ei in the basis B, we seek scalars λ1, λ2, λ3 ∈ R such that

ei = λ1e′1 + λ1e′2 + λ3e′3.

Finding the coordinates of e1 in the basis B′. We solve for λ1, λ2, λ3 ∈ R such that

e1 = λ1e′1 + λ1e′2 + λ3e′3.

This leads to the system of equations
−4λ1 + 2λ2 − λ3 = 1
λ1 + λ3 = 0
3λ1 − λ2 + λ3 = 0

=⇒ λ1 = 1, λ2 = 2, λ3 = −1

Finding the coordinates of e2 in the basis B′. We solve for λ1, λ2, λ3 ∈ R such that

e2 = λ1e′1 + λ1e′2 + λ3e′3.

This leads to the system of equations
−4λ1 + 2λ2 − λ3 = 0
λ1 + λ3 = 1
3λ1 − λ2 + λ3 = 0

=⇒ λ1 = −1, λ2 = −1, λ3 = 2.

Finding the coordinates of e3 in the basis B′. We solve for λ1, λ2, λ3 ∈ R such that

e3 = λ1e′1 + λ1e′2 + λ3e′3.
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This leads to the system of equations
−4λ1 + 2λ2 − λ3 = 0
λ1 + λ3 = 0
3λ1 − λ2 + λ3 = 1

=⇒ λ1 = 2, λ2 = 3, λ3 = −2

Thus, we obtain

P−1 =

 1 −1 2
2 −1 3
−1 2 −2

 .
(b) Finding the coordinates of v in the basis B′. Let XB = Mat

B
(v) =

 1
2
−1

 be the column matrix

of the coordinates of v in the basis B, and let X′B′ =

 λ1

λ2

λ3

 be the column matrix of the coordinates

of v in the basis B′. The change-of-basis formula gives

XB = P · X′B′ ⇐⇒ X′B′ = P−1
· XB ⇐⇒

 λ1

λ2

λ3

 =
 1 −1 2

2 −1 3
−1 2 −2

 ·
 1

2
−1

 =
 −3
−3
5


Thus, the coordinates of v = (1, 2,−1) in the basis B′ are (−3,−3, 5).

(c) The matrix associated with f relative to the new basis B′ is given by

A′ =Mat
B′

( f ) = P−1
· A · P

=

 1 −1 2
2 −1 3
−1 2 −2

 ·
 3 −1 1
−1 −2 −5
1 1 3

 ·
 −4 2 −1

1 0 1
3 −1 1


=

 15 0 9
11 4 9
−28 3 −15




