

Process Engineering – E2 Heat Transfer

Instructor: Dr. Mohamed BOUTI

First name:Last name:

Homework n°03

Exercise

A 3-m-high and 5-m-wide wall consists of long 16-cm x 22-cm cross section horizontal bricks ($\mathbf{k} = 0.72 \text{ W/m} \cdot ^{\circ} \text{C}$) separated by 3-cm-thick plaster layers ($\mathbf{k} = 0.22 \text{ W/m} \cdot ^{\circ} \text{C}$). There are also 2-cm-thick plaster layers on each side of the brick and a 3-cm-thick rigid foam ($\mathbf{k} = 0.026 \text{ W/m} \cdot ^{\circ} \text{C}$) on the inner side of the wall, as shown in Fig. 2-6. The indoor and the outdoor temperatures are 20°C and -10°C, and the convection heat transfer coefficients on the inner and the outer sides are $\mathbf{h}_1 = \mathbf{10} \text{ W/m}^2 \cdot ^{\circ} \text{C}$ and $\mathbf{h}_2 = \mathbf{25} \text{ W/m}^2 \cdot ^{\circ} \text{C}$, respectively.

Academic year: 2024-2025

Obtain a general relation for the temperature distribution inside the pipe under steady conditions, and determine the rate of heat loss from the steam through the pipe.

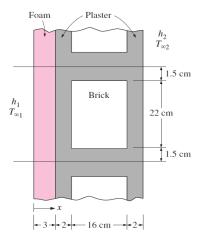


Figure 1

Abdelhafid Boussouf University Center – Mila Institute of Science & Technology

Process Engineering – E2 Heat Transfer

Academic year: 2024-2025 Instructor: Dr. Mohamed BOUTI