
Centre Universitaire de Mila

2nd year of Computer Science degree (LMD)

Module : Operating Systems 1

Bessouf Hakim

1

Processor Management

CHAPTER 3 :

1. Definition of Scheduling / Scheduler
2. Objectives of Scheduling
3. Scheduling Criteria
4. Scheduling Levels (Job Scheduling, Process Scheduling)
5. Scheduling Policies
6. Process Control (Process State, Process Control Block - PCB, Process
Creation, Termination, etc.)

Introduction

The memory space allocated to a process is called the Memory
Map of the process. It is divided into several parts:

• The Code: This is the set of instructions of the program to be
executed. This memory area is read-only.

• The Data (Data Section): Contains all constants and declared
variables.

• The Stack: Stores register values, local variables, function
parameters, and return addresses.

• The Heap: A dynamically allocated memory area, managed
during program execution using functions like new and malloc.

Process Management

• The operating system manages processes
using a Process Table stored in central
memory, known as the Process Control Block
(PCB).

• This table contains information about each
process, including:

➢Program Counter

➢Status Words

➢Stack Pointer

➢Allocated Resources (Memory, Files, etc.)

Process Manipulation

The operating system uses various primitives (procedures) to handle
processes:

Creation: A process can create another process. The first is called the
parent process, and the newly created one is the child process. A
parent process can have multiple child processes.

Activation: Moves a ready process to the active state.

Suspension: Temporarily stops a process.

Termination: Ends a process and frees all associated resources.

Scheduling Criteria

• Resource Availability:

Programs are scheduled based on the resources they require and those available in
the system.

• Program Type:

Programs are scheduled based on their category (interactive, real-time,
computation-heavy, I/O-heavy, etc.).

• Preemptive vs. Non-Preemptive Scheduling:

In non-preemptive scheduling, a process runs until it is blocked (e.g., waiting for
I/O) or it terminates.

In preemptive scheduling, the scheduler can suspend an active process to run
another.

• Priority Scheduling:

Processes may have execution priorities (e.g., system processes get higher priority
than user processes).

Scheduling Levels

There are two main levels of scheduling:

Job Scheduling

Determines which job enters the system
and creates the corresponding process.

Process Scheduling

Determines which process gets CPU
time.

Job Scheduling (Long-Term Scheduling)

Memory Pool in Scheduling
• In the context of scheduling, a memory pool refers to a pre-allocated block

of memory that is managed and used by the operating system to store
processes that are waiting for execution. It plays a crucial role in job
scheduling and process scheduling by ensuring that only processes with
sufficient memory can be admitted into execution.

Job Scheduling (Long-Term Scheduling)
• When a job is submitted for execution, it is first placed in a job queue.
• The system checks if there is enough space in the memory pool before

admitting the job into the ready queue.
• If the memory pool is full, the job must wait until memory becomes

available.

Process Scheduling (Short-Term Scheduling)

Process Scheduling (Short-Term Scheduling)

• The memory pool contains all processes that are currently loaded into
RAM and ready to execute.

• The CPU scheduler selects processes from this memory pool to assign
CPU time.

• If a process requires more memory than available in the memory
pool, it may be swapped out (paging in virtual memory) or delayed.

Process Scheduler

• The scheduler is a module of the operating system that distributes
CPU time among multiple processes waiting for execution (in the
ready state) based on predefined scheduling policies.

• The scheduler selects the next process to be executed, a decision
known as scheduling.

Objectives of the Scheduler

The scheduler aims to:

• Ensure fairness:

It must allocate the CPU fairly among processes with the same priority.

• Maximize resource utilization:

The scheduler should ensure efficient use of system resources (CPU,
memory, I/O).

Scheduler Objectives by System Type

• Execute as many jobs as possible per hour.

• Maximize CPU utilization.

• Minimize response time to user requests.

• Meet strict timing constraints.

Aspect Job Scheduling Process Scheduling

Definition
Selects jobs from the job pool to load into
memory.

Selects processes from the ready queue
to execute on the CPU.

Level Higher level (job pool → memory). Lower level (memory → CPU).

Frequency Less frequent. Very frequent.

Objective Balance system load and resource utilization. Maximize CPU utilization and fairness.

Example Admitting a new job into memory. Allocating CPU time to a process.

Impact on Performance
Affects system throughput and resource
utilization.

Affects responsiveness and fairness.

Job Scheduling Policies

1- Non-Preemptive Scheduling Policies

First-Come, First-Served (FCFS) / FIFO:

The first job that arrives is executed first.

Disadvantage: Short processes may wait too long.

Shortest Job First (SJF):

The shortest job is executed first.

Advantage: Prioritizes shorter tasks.

Requirement: The system must predict execution times in advance.

Priority-Based Scheduling:

The scheduler executes the job with the highest priority first.

Priority may be preemptive or non-preemptive.

Job Scheduling Policies

2- Preemptive Scheduling Policies
Shortest Remaining Time First (SRTF):

The job with the shortest remaining execution time is scheduled first.

If a new job arrives with a shorter remaining time, the current job is
preempted.

"This policy favors short jobs, but it requires knowing the execution
time of the jobs in advance."

Process Scheduling Policies

Round Robin Scheduling

• Used in time-sharing systems.

• Similar to FCFS, but with time slices
(quantum).

• Each process gets a fixed amount of CPU
time before the next process runs.

• If the quantum is too large → behaves
like FCFS.

• If the quantum is too small → increases
CPU overhead due to frequent context
switching.

Process Scheduling Policies

Multi-Level Queue Scheduling

• A CPU scheduling algorithm that divides the ready queue into multiple
separate queues, each designed for a specific type of process. Each queue
may use a different scheduling algorithm and have its own priority

• Each queue has its own scheduling policy.

• A higher-level scheduler manages queue execution.

• The OS assigns priorities to queues.

• A higher-priority queue preempts lower-priority queues (if preemptive
MLQ is used).

• If non-preemptive, a lower-priority queue only runs when higher-priority
queues are empty.

Process Scheduling Policies

• Multi-Level Queue Scheduling

• Windows Task Scheduling:
• Real-time processes (e.g., system services) have higher priority.

• Interactive applications (e.g., MS Word, Chrome) run with time-sharing
(Round Robin).

• Background tasks (e.g., Windows Update, indexing) get CPU only when
resources are available.

Process Scheduling Policies

Multi-Level Feedback Queue Scheduling

• Processes can change queues based on their execution behavior.

• Example: A CPU-bound process may be moved to a lower-priority
queue over time.

Process Scheduling Policies

➢Multiple Queues with Different Priorities

• High-priority queues for interactive tasks (short CPU bursts).

• Low-priority queues for background tasks (long CPU bursts).

➢Priority Adjustment Based on Execution Time

• Short jobs remain in high-priority queues (fast response).

• Long-running jobs are demoted to lower-priority queues.

➢Aging to Prevent Starvation

• A long-waiting process in a low-priority queue may be promoted to
prevent starvation.

Threads

• A thread is the smallest unit of execution
within a process. A process can have one or
multiple threads running in parallel, sharing
the same resources.

• A thread is a lightweight process that runs
within a larger process.

• Multiple threads within the same process
share:

➢The same memory space.

➢The same data.

Threads

➢User-Level Threads (ULT)

• Managed by user-space libraries, not the OS.

• Faster and more lightweight.

➢Kernel-Level Threads (KLT)

• Managed by the Operating System.

• More overhead but can take advantage of
multiple CPU cores.

➢Hybrid Threads (Two-Level Model)

• Combination of user-level and kernel-level
threads.

Feature User-Level Threads (ULT) Kernel-Level Threads (KLT)

Managed By User-space libraries (not OS) Operating System Kernel

Speed Faster (No system calls) Slower (Context switch needs system calls)

Parallel Execution No true parallelism (OS sees only

one thread)

True parallelism (Threads run on multiple cores)

Blocking Issue If one thread blocks, all threads in

the process are blocked

If one thread blocks, others continue running

Scheduling Handled by user-space libraries Handled by OS scheduler

Context Switching Faster (No kernel intervention) Slower (Requires kernel involvement)

Portability High (Works on different OSes) Low (Depends on OS support)

Resource Sharing Threads share process resources Threads also share, but managed by OS

Examples POSIX threads (pthreads), Java

threads

Windows CreateThread(), Linux clone()

Thread Advantages

• Faster creation & termination compared to full processes.

• Enables concurrent execution of tasks.

• Maximizes performance on multi-core processors (each thread can
run on a separate CPU core).

	Slide 1: Centre Universitaire de Mila 2nd year of Computer Science degree (LMD)
	Slide 2: Processor Management
	Slide 3: Introduction
	Slide 4: Process Management
	Slide 5: Process Manipulation
	Slide 6: Scheduling Criteria
	Slide 7: Scheduling Levels
	Slide 8: Job Scheduling (Long-Term Scheduling)
	Slide 9: Process Scheduling (Short-Term Scheduling)
	Slide 10: Process Scheduler
	Slide 11: Objectives of the Scheduler
	Slide 12: Scheduler Objectives by System Type
	Slide 13
	Slide 14: Job Scheduling Policies
	Slide 15: Job Scheduling Policies
	Slide 16: Process Scheduling Policies
	Slide 17: Process Scheduling Policies
	Slide 18: Process Scheduling Policies
	Slide 19: Process Scheduling Policies
	Slide 20: Process Scheduling Policies
	Slide 21: Threads
	Slide 22: Threads
	Slide 23
	Slide 24: Thread Advantages
	Slide 25

