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Solution0 1. (Exercise 1)

1. The sentence "Paris is in France or Madrid is in China" is a proposition.

• **Truth Value:** True.

2. The sentence "Open the door" is not a proposition because it is a command.

3. The sentence "The moon is a satellite of the Earth" is a proposition.

• **Truth Value:** True.

4. The equation x+ 5 = 7 is not a proposition.

5. The inequality x+ 5 > 9 for every real number x is a proposition.

• **Truth Value:** False.

Solution0 2.
Determine whether each of the following implications is true or false.

1. If 0.5 is an integer, then 1 + 0.5 = 3.
True

2. If 5 > 2, then cats can fly.
False

3. If 3× 5 = 15, then 1 + 2 = 3.
True

4. For any real x ∈ R, if x ≤ 0, then (x− 1) < 0.
True

Solution0 3.
Let f : R −→ R be a function. Negate the following propositions:

1. ∃x ∈ R such that f(x) = 0.
Negation: ∀x ∈ R, f(x) 6= 0.

2. ∃M > 0, ∀A > 0, ∃x ≥ A : f(x) ≤M .
Negation: ∀M > 0, ∃A > 0, ∀x ≥ A : f(x) > M.

3. ∃x ∈ R, f(x) > 0.
Negation: ∀x ∈ R, f(x) ≤ 0.

4. ∀ε > 0, ∃η > 0, ∀(x, y) ∈ I2, (|x− y| ≤ η ⇒ |f(x)− f(y)| > ε).
Negation: ∃ε > 0, ∀η > 0, ∃(x, y) ∈ I2, |x− y| ≤ η ∧ |f(x)− f(y)| ≤ ε.
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Solution0 4.

1. Contrapositive: "For all integers a and b, if a or b is odd, then a+ b is odd."

2. Converse: "For all integers a and b, if a and b are even, then a+ b is even."

3. Negation: "There exist integers a and b such that a+b is even and a is odd or b is odd."

4. Original Statement: False (Counterexample: a = 1, b = 1, a+b = 2, but both are odd.)

5. Contrapositive: False (The contrapositive is logically equivalent to the original state-
ment.)

6. Converse: True (The sum of two even numbers is always even.)

7. Negation: True

Solution0 5.
Prove that if n is an even integer, then n2 is also an even integer.

Proof: Suppose n is an even integer. By definition, this means n = 2k for some integer k.
Now, consider n2:

n2 = (2k)2 = 4k2

Since k is an integer, 4k2 is clearly divisible by 2 (specifically, 4k2 = 2(2k2)). Therefore, n2 is
even.

Solution0 6.
Suppose, for the sake of contradiction, that

√
2 is rational. This means we can express

√
2 as

p
q
, where p and q are integers with no common factors (i.e., p

q
is in its simplest form).

Then, √
2 =

p

q

Squaring both sides gives:

2 =

(
p

q

)2

=
p2

q2

Multiplying through by q2 gives:
2q2 = p2

This implies that p2 is even (since 2q2 is even). From this, we conclude that p itself must be
even (because the square of an odd number is odd, and the square of an even number is even).

Let p = 2k for some integer k. Substituting in p2 = (2k)2 = 4k2, we get:

2q2 = 4k2 =⇒ q2 = 2k2

This shows that q2 is even, hence q must also be even (similar reasoning as for p). Now,
both p and q are even. However, this contradicts our initial assumption that p

q
is in its simplest

form (no common factors). If both p and q are even, then p
q
can be further reduced by dividing

both numerator and denominator by 2, which contradicts the assumption that p
q
is already in

its simplest form.
Therefore, our initial assumption that

√
2 is rational must be false. Hence,

√
2 is irrational.
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Solution0 7.
(1) Prove that if n2 is an even integer, then n is also an even integer.

We will prove this statement by contrapositive.
Contrapositive: The contrapositive of "If n2 is even, then n is even" is: "If n is odd, then

n2 is odd."
Proof: Let n be an odd integer. By the definition of odd integers, n = 2k + 1 for some

integer k.
Now, calculate n2:

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1.

Since 2k2 + 2k is an integer, the expression 2(2k2 + 2k) + 1 is odd.
Thus, if n is odd, then n2 is odd. This proves the contrapositive, and hence, if n2 is even,

then n is even.
(2) Prove that if a and b are integers and ab is odd, then both a and b are odd.
We will prove this statement by contrapositive.
Contrapositive: The contrapositive of "If ab is odd, then both a and b are odd" is: "If

either a or b is even, then ab is even."
Proof: Assume that either a or b is even. Without loss of generality, assume a is even.

Then, a = 2k for some integer k.
Therefore, the product ab becomes:

ab = (2k)× b = 2(kb).

Since 2(kb) is divisible by 2, ab is even.
Thus, if either a or b is even, then ab is even. This proves the contrapositive, and hence, if

ab is odd, then both a and b must be odd.

Solution0 8.

1. Prove that for all positive integers n, 1 + 3 + 5 + · · ·+ (2n− 1) = n2.

Proof: We will prove the statement by mathematical induction.

Base Case: For n = 1,
1 = 12

which is true.

Inductive Step: Assume the statement holds for some arbitrary positive integer k, i.e.,

1 + 3 + 5 + · · ·+ (2k − 1) = k2.

We need to prove it holds for k + 1:

1 + 3 + 5 + · · ·+ (2k − 1) + (2(k + 1)− 1) = (k + 1)2.

Adding 2(k + 1)− 1 = 2k + 1 to both sides gives:

k2 + 2k + 1 = (k + 1)2.

Hence, the statement holds for k + 1.

Therefore, by mathematical induction, for all positive integers n, 1+3+5+· · ·+(2n−1) =
n2.
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2. Prove that for all positive integers n, 2n > n.

Proof: We will prove the statement by mathematical induction.

Base Case: For n = 1,
21 = 2 > 1,

which is true.

Inductive Step: Assume the statement holds for some arbitrary positive integer k, i.e.,

2k > k.

We need to prove it holds for k + 1:

2k+1 = 2 · 2k > 2 · k = k + k ≥ k + 1.

Therefore, 2k+1 > k + 1.

Hence, by mathematical induction, for all positive integers n, 2n > n.

Solution0 9.
We are tasked with proving that for all x ∈ R, the inequality

|x− 1| ≤ x2 − x+ 1

holds. We’ll use a proof by disjunction of cases.
Case 1: x− 1 ≥ 0 (i.e., x ≥ 1
If x− 1 ≥ 0, the absolute value becomes:

|x− 1| = x− 1.

Substituting |x− 1| = x− 1 into the inequality:

x− 1 ≤ x2 − x+ 1.

Rearranging terms:
x2 − 2x+ 2 ≥ 0.

Factoring x2 − 2x+ 2 (or completing the square):

x2 − 2x+ 2 = (x− 1)2 + 1.

Since (x− 1)2 ≥ 0 and 1 > 0, it follows that:

x2 − 2x+ 2 ≥ 0.

Thus, the inequality holds in this case.
Case 2: x− 1 < 0 (i.e., x < 1
If x− 1 < 0, the absolute value becomes:

|x− 1| = −(x− 1) = 1− x.

Substituting |x− 1| = 1− x into the inequality:

1− x ≤ x2 − x+ 1.

Rearranging terms:
x2 ≥ 0.

This inequality is always true because x2 ≥ 0 for all x ∈ R.
Conclusion:
In both cases, the inequality |x− 1| ≤ x2 − x+ 1 holds for all x ∈ R.
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Solution0 10.
Prove that the following statement is false: "Every positive integer is the sum of three squares."
Proof: We will provide a counterexample to show that not every positive integer can be expressed
as the sum of three squares.

Consider the integer n = 7.
Now, we will check if 7 can be expressed as a2 + b2 + c2 where a, b, c are integers.
Testing possible combinations:

12 + 12 + 12 = 1 + 1 + 1 = 3,

12 + 12 + 22 = 1 + 1 + 4 = 6,

12 + 22 + 22 = 1 + 4 + 4 = 9.

None of these combinations yield 7.
Therefore, 7 cannot be expressed as the sum of three squares.
Since we have found at least one positive integer (specifically 7) that cannot be written as

the sum of three squares, the statement "Every positive integer is the sum of three squares" is
false.
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