SUMMARY – EXTERNAL FORCED CONVECTION HEAT TRANSFER

Convection heat transfer is expressed by Newton's law of cooling as

$$q_{conv} = h.A_s.(T_s - T_\infty)$$

Where

h is the convection heat transfer coefficient,

 T_s is the surface temperature, and

 T_∞ is the free-stream temperature.

The convection coefficient is also expressed as

$$h = \frac{-k_{fluid} \cdot (\frac{\partial T}{\partial y})_{y=0}}{(T_s - T_\infty)}$$

The dimensionless heat transfer coefficient, called the Nusselt number (Nu), is defined as

$$Nu = \frac{h.L_c}{k}$$

Where

k is the thermal conductivity of the fluid,

 L_c is the characteristic length.

The friction force per unit area is called *shear stress*(τ_s), and the *shear stress* at the wall surface is expressed as

$$\tau_s = \left. \mu \cdot \frac{\partial u}{\partial y} \right|_{y=0}$$
 or $\tau_s = C_f \cdot \frac{\rho \cdot V^2}{2}$

Where

 μ is the dynamic viscosity,

V is the upstream velocity, and

 C_f is the dimensionless friction coefficient.

The property ($\nu = \mu'/\rho$) is the kinematic viscosity.

The friction force over the entire surface is determined from

$$F_f = C_f \cdot A_s \cdot \frac{\rho \cdot V^2}{2}$$

The flow region over the surface in which the temperature variation in the direction normal to the surface is significant is the **thermal boundary layer**(δ_t).

The thickness of the thermal boundary layer δ_t at any location along the surface is the distance from the surface at which the temperature difference $T - T_s$ equals $0.99(T_{\infty} - T_s)$.

SUMMARY - EXTERNAL FORCED CONVECTION HEAT TRANSFER

The relative thickness of the velocity and the thermal boundary layers, (δ) and (δ_t) respectively, is best described by the dimensionless **Prandtl number** (**Pr**), defined as

$$Pr = \frac{\nu}{\alpha} = \frac{\mu . C_p}{k}$$

For external flow, the dimensionless **Reynolds number** (**Re**) is expressed as

$$Re = \frac{V.L_c}{v} = \frac{\rho.V.L_c}{\mu}$$

For a flat plate, the characteristic length is the distance (**x**) from the leading edge. The Reynolds number at which the flow becomes turbulent is called the critical Reynolds number. For flow over a flat plate, its value is taken to be

$$Re_{cr} = \frac{V.x_{cr}}{v} = 5 \times 10^5$$

The drag coefficient (C_D) is a dimensionless number that represents the drag characteristics of a body, and is defined as

$$C_D = \frac{F_D}{\frac{1}{2} \cdot \rho \cdot V^2 \cdot A}$$

Where

A is the frontal area for blunt bodies, and surface area for parallel flow over flat plates or thin airfoils.

For flow over a flat plate, the Reynolds number is

$$Re = \frac{V.x}{v} = \frac{\rho.V.x}{\mu}$$

Transition from laminar to turbulent occurs at the critical Reynolds number of

$$Re_{x,cr} = \frac{V.x_{cr}}{v} = 5 \times 10^5$$

FOR PARALLEL FLOW OVER A FLAT PLATE

The local friction coefficient ($C_{f,x}$) and convection coefficient (Nu_x) are

Regime flow	Correlation	Condition
Laminar	$C_{f,x} = \frac{0.664}{Re_x^{1/2}}$	$Re_x < 5 \times 10^5$
	$Nu_{x} = \frac{h_{x} \cdot x}{k} = 0.332 Re_{x}^{0.5} Pr^{\frac{1}{3}}$	Pr > 0.6
Turbulent	$C_{f,x} = \frac{0.059}{Re_x^{1/5}}$	$5 \times 10^5 \le Re_x \le 10^7$
	$Nu_x = \frac{h_x \cdot x}{k} = 0.0296 \operatorname{Re}_x^{0.8} \operatorname{Pr}^{\frac{1}{3}}$	$0.6 \le \Pr \le 60$

SUMMARY – EXTERNAL FORCED CONVECTION HEAT TRANSFER

The average friction coefficient (C_f) relations for flow over a flat plate are:

Regime flow	Correlation	Condition
Laminar	$C_f = rac{1.33}{Re_L^{1/2}}$	$Re_L < 5 \times 10^5$
Turbulent	$C_f = rac{0.074}{Re_L^{1/5}}$	$5 \times 10^5 \le Re_L \le 10^7$
Combined	$C_f = \frac{0.074}{Re_L^{1/5}} - \frac{1742}{Re_L}$	$5 \times 10^5 \le Re_L \le 10^7$

The **average Nusselt number** (*Nu*) relations for flow over a flat plate are:

Regime flow	Correlation	Condition
Laminar	$Nu = \frac{h.L}{k} = 0.664 Re_L^{0.5} Pr^{\frac{1}{3}}$	$Re_L < 5 imes 10^5$
Turbulent	$Nu = \frac{h.L}{k} = 0.037 Re_L^{0.8} Pr^{\frac{1}{3}}$	$5 \times 10^5 \le Re_L \le 10^7$ $0.6 \le \Pr \le 60$
Combined	$Nu = \frac{h.L}{k} = (0.037Re_L^{0.8} - 871)Pr^{\frac{1}{3}}$	$5 \times 10^5 \le Re_L \le 10^7$ $0.6 \le \Pr \le 60$

FOR ISOTHERMAL SURFACES WITH AN UNHEATED STARTING SECTION OF LENGTH (ξ)

Regime flow	Correlations for local Nusselt Number (Nu_x)	
Laminar	$Nu_{x} = \frac{Nu_{x (for \xi=0)}}{\left[1 - (\xi/\chi)^{3/4}\right]^{1/3}} = \frac{0.332Re_{x}^{0.5}Pr^{\frac{1}{3}}}{\left[1 - (\xi/\chi)^{3/4}\right]^{1/3}}$	
Turbulent	$Nu_{\chi} = \frac{Nu_{\chi (for \xi=0)}}{\left[1 - (\xi/\chi)^{9/10}\right]^{1/9}} = \frac{0.0296 \text{Re}_{\chi}^{0.8} \text{Pr}^{\frac{1}{3}}}{\left[1 - (\xi/\chi)^{9/10}\right]^{1/9}}$	
Regime flow	Correlations for the average convection coefficient (h)	
Laminar	$h = \frac{2\left[1 - \left(\frac{\xi}{\chi}\right)^{3/4}\right]}{1 - \frac{\xi}{L}}h_{x=L}$	
Turbulent	$h = \frac{5\left[1 - \left(\frac{\xi}{\chi}\right)^{9/10}\right]}{1 - \frac{\xi}{L}}h_{x=L}$	

SUMMARY – EXTERNAL FORCED CONVECTION HEAT TRANSFER

FOR A UNIFORM HEAT FLUX OVER A FLAT PLATE

Regime flow	Correlations for local Nusselt Number (Nu_x)
Laminar	$Nu_x = 0.453 Re_x^{0.5} Pr^{\frac{1}{3}}$
Turbulent	$Nu_{x} = 0.0308Re_{x}^{0.8}Pr^{\frac{1}{3}}$

FOR CROSS FLOW OVER A CYLINDER AND SPHERE ARE

Regime flow	Correlations for the avarage Nusselt Number (<i>Nu</i>)		
Laminar Valid for : $Re. Pr > 0.2$	$Nu_{cyl} = \frac{h.D}{k} = 0.3 + \frac{0.62Re_x^{0.5}Pr^{\frac{1}{3}}}{\left[1 + \left(\frac{0.4}{Pr}\right)^{2/3}\right]^{1/4}} \left[1 + \left(\frac{Re}{282\ 000}\right)^{5/8}\right]^{4/5}$		
Turbulent Valid for : $3.5 \le Re \le 80\ 000$ $0.7 \le Pr \le 380$	$Nu_{sph} = \frac{h.D}{k} = 2 + \left[0.4Re^{1/2} + 0.06Re^{2/3}\right]Pr^{0.4} \left(\frac{\mu_{\infty}}{\mu_{s}}\right)^{1/4}$		

The fluid properties are evaluated at the film temperature $T_f = \frac{(T_{\infty} + T_S)}{2}$ in the case of a cylinder, and at the freestream temperature (T_{∞}) .

Except for μ_s , which is evaluated at the surface temperature (T_s) . in the case of a sphere.

