Series N° 1

Exercise 1

The retention times of two natural products A and B in a mixture to be separated are 16.40 and 17.63 minutes, respectively, on a 30.0 cm column. A non-retained species passes through the column in 1.30 minutes. The peak widths (at the base) of A and B are 1.11 and 1.21 minutes, respectively.

Calculate:

- a) The resolution of the column.
- b) The average number of theoretical plates in the column.
- c) The height equivalent to a theoretical plate.
- d) The length of the column required to achieve a resolution of 1.5.
- e) The time required to elute substance B from this column.

Exercise 2

We have a C18 silica column with the following characteristics:

Pore volume	0.25 mL/g
Specific surface area (S)	96.8 m ²
Average particle diameter (dp):	3µm
Maximum pressure drop	300 bars (30 106 Pa)
pH range	2-7.5
Temperature range	10-50 °C
Length	10 cm
Internal diameter	4.6 mm
Total porosity ε	0.8
Flow resistance	500

We are studying the separation of a series of drugs with a diffusion coefficient in the mobile phase $D_m=10^{-9}m^2/s$. Two of the drugs we are particularly interested in have retention factors $\mathbf{k'} = 2.8$ and $\mathbf{k'} = 3.1$. We have established the Knox curve for these drugs, and it shows a minimum at $\mathbf{H}=4$ and $\mathbf{v}=4$.

- 1. Calculate the dead volume of the column.
- 2. Calculate the optimal flow rate for this column when analyzing the drugs.
- 3. Calculate the dead time at this flow rate.
- 4. Calculate the number of theoretical plates and the column length with the same packing required to achieve a resolution of 1.5.

Name	Symbol of Experimental Parameter	Determined from
Dead time	t _m	Chromatogram
Retention time of species 1 and 2	$\mathbf{t_{r1}, t_{r2}}$	Chromatogram
Corrected or Reduced Retention Time	t _{r'}	$t_r' = t_r - t_m$
Peak Width, Species 1 and 2	l_1, l_2	Chromatogram
Column Length	L	Direct Measurement
Flow Rate	F	Direct Measurement
Stationary Phase Volume	Vs	Filler Data
Column Volume	Vc	Data
Solute Concentration in Stationary and	C _m , C _s	Data
mobile Phases		
Diffusion Coefficient	D _m	Data
Particle Diameter	d _p	Data
Total Porosity	3	Data

Table 1: Important Experimental Parameters in Chromatography

Table 2: Most Important Derived Parameters

Name	Calculation	Relation with Derived Parameters
Linear Velocity of the Mobile Phase	$\mu = \frac{L}{t_m} = \frac{v D_m}{d_p}$	
Mobile Phase Flow Rate	$\mathbf{D}=\boldsymbol{\varepsilon}.\ \mathbf{S}.\ \boldsymbol{\mu}$	
Total Porosity	$\varepsilon = \frac{V_m}{V_c}$	
Mobile Phase Volume	$V_m = \frac{t_m}{D}$	
Retention Factor	$K'=\frac{t_r-t_m}{t_m}$	$K' = K \frac{V_s}{V_M}$
Distribution Constant	$K = K' \frac{V_M}{V_s}$	$K = \frac{C_s}{C_m}$
Selectivity Factor	$\alpha = \frac{t'_{r_2}}{t'_{r_1}}$	$\alpha = \frac{k_2'}{k_1'}$
Resolution	$\mathbf{R} = \frac{2(\mathbf{t}_{\mathbf{r}_2} - \mathbf{t}_{\mathbf{r}_1})}{\boldsymbol{\omega}_1 + \boldsymbol{\omega}_2}$	$R = \frac{\sqrt{N}}{4} \left(\frac{\alpha - 1}{\alpha}\right) \left(\frac{K_2'}{1 + K_2'}\right)$
Number of Theoretical Plates	$N = 5.54 \ \frac{t_r^2}{\delta^2}$	$N = 16 R^2 \left(\frac{\alpha}{\alpha - 1}\right)^2 \left(\frac{1 + K'_2}{K'_2}\right)^2$
	$N = 16 \frac{t_r^2}{\omega^2}$	
Theoretical Plate Height (HEPT or H)	$H = \frac{L}{N}$	$h = \frac{H}{d_p}$
Retention time	$t_r = rac{16R^2H}{\mu} (rac{lpha - 1}{lpha})^2 (rac{1 + k'}{K'_2})^3$	