CHAPTER 2: IMPROPER INTEGRALS

Improper Integral of the Second Kind:

If f(x) is unbounded only at the endpoint x = a of the interval $a \le x \le b$, then we define:

$$\int_{a}^{b} f(x) dx = \lim_{\varepsilon \to 0^{+}} \int_{a+\varepsilon}^{b} f(x) dx$$

We say that $\int_a^b f(x) dx$ is convergent if the limit exists.

We say that $\int_a^b f(x) dx$ is divergent if the limit does not exist.

If f(x) is unbounded only at the endpoint x = b of the interval $a \le x \le b$, then we define:

$$\int_{a}^{b} f(x) dx = \lim_{\varepsilon \to 0^{+}} \int_{a}^{b-\varepsilon} f(x) dx$$

We say that $\int_a^b f(x) dx$ is convergent if the limit exists.

We say that $\int_a^b f(x) dx$ is divergent if the limit does not exist.

If f(x) is unbounded only at an interior point $x = x_0$ of the interval $a \le x \le b$. Then, we set:

$$\int_{a}^{b} f(x) dx = \lim_{\varepsilon_1 \to 0^+} \int_{a}^{x_0 - \varepsilon_1} f(x) dx + \lim_{\varepsilon_2 \to 0^+} \int_{x_0 + \varepsilon_2}^{b} f(x) dx$$

We say that $\int_a^b f(x) dx$ is convergent if the limit exists.

We say that $\int_a^b f(x) dx$ is divergent if the limit does not exist.

Cauchy Principal Value:

It may happen that the limits do not exist when ε_1 and ε_2 tend to zero independently. In this case, it is possible to set $\varepsilon_1 = \varepsilon_2 = \varepsilon$ so that:

$$\int_{a}^{b} f(x) dx = \lim_{\varepsilon \to 0^{+}} \int_{a}^{x_{0} - \varepsilon} f(x) dx + \lim_{\varepsilon_{2} \to 0^{+}} \int_{x_{0} + \varepsilon}^{b} f(x) dx$$

If this limit exists, we call this limiting value the Cauchy Principal Value.

Improper Integral of the Second Kind for Specific Functions:

- $ightharpoonup \int_a^b \frac{dx}{(x-a)^p} dx$ converges if p < 1, and diverges if $p \ge 1$.

Remark: In the case where $p \le 0$, the integrals are proper.

Convergence Criteria for Improper Integrals of the Second Kind:

- ➤ Comparison Criterion for Integrals with Non-negative Integrand:
 - a) Convergence: Let $g(x) \ge 0$ for all $a < x \le b$, and suppose that $\int_a^b g(x) \, dx$ converges. Then, if $0 \le f(x) \le g(x)$ for all $a < x \le b$, it follows that $\int_a^b f(x) \, dx$ also converges.
 - b) Divergence: Let $g(x) \ge 0$ for all $a < x \le b$, and suppose that $\int_a^b f(x) \, dx$ diverges. Then, if $f(x) \ge g(x)$ for all $a < x \le b$, it follows that $\int_a^b f(x) \, dx$ also diverges.
- ➤ Quotient Criterion for Integrals with Non-Negative Integrand:
 - a) If $f(x) \ge 0$ and $g(x) \ge 0$, for all $a < x \le b$, if $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = A \ne 0$ or ∞ , then $\int_a^b f(x) \, dx$ and $\int_a^b g(x) \, dx$ both converge or both diverge.
 - b) If A = 0 dans (a) and if $\int_a^{+\infty} g(x) dx$ converges, then $\int_a^{+\infty} f(x) dx$ converges.
 - c) If $A = \infty$ dans (a) and if $\int_a^{+\infty} g(x) dx$ diverges, then $\int_a^{+\infty} f(x) dx$ diverges.

This criterion is related to the comparison criterion, of which it is a very useful alternative form. In particular, by taking $g(x) = \frac{1}{(x-a)^p}$, we obtain, based on the known behavior of this integral:

Theorem 2: let $\lim_{x \to +\infty} (x - a)^p f(x) = A$, then:

- $\int_a^b f(x) dx$ converges if p < 1 and if A is finite.
- $\int_a^b f(x) dx$ diverges if $p \ge 1$ and if $A \ne 0$ (A is infinite).

Theorem 3: let $\lim_{x \to +\infty} (b-x)^p f(x) = B$, then:

- $\int_a^b f(x) dx$ converges if p < 1 and if B is finite.
- $\int_a^b f(x) dx$ diverges if $p \ge 1$ and if $B \ne 0$ (A is infinite).
- Absolute and Conditional Convergence: $\int_a^b f(x) dx$ is said to be absolutely convergent if $\int_a^b |f(x)| dx$ converges. If $\int_a^b f(x) dx$ converges but $\int_a^b |f(x)| dx$ diverges, then $\int_a^b f(x) dx$ is said to be conditionally convergent.