CHAPTER 2: IMPROPER INTEGRALS

Definition of an Improper Integral:

The integral $\int_{a}^{b} f(x) dx$ is called an improper integral if:

- $a = -\infty$ or $b = +\infty$ or both.
- We can find multiple points within the same interval as long as a ≤ x ≤ b. These points are called the singular points of f(x).

Improper Integral of the First Kind:

Let f(x) be a bounded and integrable function over every finite interval $a \le x \le b$. Then, by definition:

$$\int_{a}^{+\infty} f(x) \, dx = \lim_{b \to +\infty} \int_{a}^{b} f(x) \, dx$$

The integral $\int_{a}^{+\infty} f(x) dx$ is said to be convergent if $\lim_{b \to +\infty} \int_{a}^{b} f(x) dx$ exists.

The integral $\int_{a}^{+\infty} f(x) dx$ is said to be divergent if $\lim_{b \to +\infty} \int_{a}^{b} f(x) dx$ does not exist.

The same definition applies for:

$$\int_{-\infty}^{b} f(x) \, dx = \lim_{a \to -\infty} \int_{a}^{b} f(x) \, dx$$

Improper Integral of the First Kind for Specific Functions:

- The geometric or exponential integral: $\int_{a}^{+\infty} e^{-tx} dx$, where t is a constant, is convergent if t > 0, and divergent if $t \le 0$.
- The power integral of the first kind: $\int_{a}^{+\infty} \frac{dx}{x^{p}}$ where p is a constant and a > 0, is convergent if p > 1, and divergent if $p \le 1$. (This is known as the Riemann series.)
- The power integral of the first kind: $\int_0^1 \frac{dx}{x^p}$ where *p* is a constant and a = 0 is a singularity point, is convergent if p < 1, and divergent if $p \ge 1$. (This is known as the Riemann series.)

Convergence Criteria for Improper Integrals of the First Kind:

> Comparison Criterion for Integrals with Non-Negative Integrands:

- a) Convergence: Let $g(x) \ge 0$ for all $x \ge a$, and suppose that $\int_a^{+\infty} g(x) dx$ converges. Then, if $0 \le f(x) \le g(x)$ for all $x \ge a$, $\int_a^{+\infty} f(x) dx$ also converges.
- b) Divergence: Let $g(x) \ge 0$ for all $x \ge a$, and suppose that $\int_a^{+\infty} g(x) dx$ diverges. Then, if $f(x) \ge g(x)$ for all $x \ge a$, $\int_a^{+\infty} f(x) dx$ also diverges.
- > Quotient Criterion for Integrals with Non-negative Integrands:
 - a) If $f(x) \ge 0$ and $g(x) \ge 0$, and if $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = A \ne 0$ or ∞ , then $\int_{a}^{+\infty} f(x) dx$ and $\int_{a}^{+\infty} g(x) dx$ either both converge or both diverge.
 - b) If A = 0 in (a) and if $\int_{a}^{+\infty} g(x) dx$ converges, then $\int_{a}^{+\infty} f(x) dx$ converges.
 - c) If $A = \infty$ in (a) and if $\int_{a}^{+\infty} g(x) dx$ diverges, then $\int_{a}^{+\infty} f(x) dx$ diverges.

This criterion is related to the comparison criterion, of which it is a very useful alternative form. In particular, by taking $g(x) = \frac{1}{x^p}$, we obtain, based on the known behavior of this integral:

Theorem 1: let $\lim_{x \to +\infty} x^p f(x) = A$, then:

- $\int_{a}^{+\infty} f(x) dx$ converges if p > 1 and A est fini.
- $\int_{a}^{+\infty} f(x) dx$ diverges if $p \le 1$ and $A \ne 0$ (A may be infinite).
- Absolute Convergence and semi-convergence: $\int_{a}^{+\infty} f(x) dx$ is said to be absolutely convergent if $\int_{a}^{+\infty} |f(x)| dx$ converges. If $\int_{a}^{+\infty} f(x) dx$ converges but $\int_{a}^{+\infty} |f(x)| dx$ diverges, then $\int_{a}^{+\infty} f(x) dx$ is said to be semi-convergent.