Macroscopic Assessment module

Series N° 1

Exercise 1:

A 0.5 M of aqueous solution of sulfuric acid enters to a process with a flow rate of $1.25 \text{ m}^3/\text{min}$, if the density of the solution is 1.03, calculate:

1- The mass concentration of H_2SO_4 in Kg/m³

- 2- The mass flow of H_2SO_4 in Kg/s
- 3- The mass fraction of H_2SO_4 in the solution if we have a flow rate of the solution is 2.73 m³/min

Exercise 2:

A liquid mixture of n-butane, n-pentane and n-hexane, in mass composition is as follow:

N-Butane 50%

N-Pentane 30%

N-Hexane 20%

Calculate the molar fraction for each constituent of the mixture, as well as the average molar mass of the mixture.

Exercise 3:

Let be the following distillation column:

• Caclculate D and W

Exercise 4:

A unit operation involving a binary mixture (A,B) and operating in stationary mode and without any chemical reaction such as:

Complete the following table :

1		2		3	
Molar fraction	Molar flow (mol/s)	Molar fraction	Molar flow (mol/s)	Molar fraction	Molar flow (mol/s)
$X_{A1} = 0.2$	F _{A1}	$X_{A2} = 0.05$	F _{A2}	$X_{A3} = 0.35$	F _{A3}
X _{B1}	F _{B1}	X_{B2}	F _{B2}	X _{B3}	F _{B3}
X1	$F_1 = 10$	X ₂	F ₂	X ₃	F ₃

Exercise 5:

A distillation column is continuously fed with 1200 Kg/h of an ethanol- water mixture at 11% by mass in ethanol. At the outlet of the installation , a flow of water no longer containing ethanol is recovered, and a flow whose mass content in ethanol is 95%

- Make a block diagram indicating the principles notations
- Calculate the mass and molar output flows of the installation

Dr H. Boussafsaf