Heat Transfer

Process Engineering – L3

Exercise 1.1

Exercise 1.2

The inner and outer surfaces of a **4-m x 7-m** brick wall of thickness **30 cm** and thermal conductivity **0.69 W/m·K** are maintained at temperatures of **20°C** and **5°C**, respectively. Determine the rate of heat transfer through the wall, in **W**.

An aluminium pan whose thermal conductivity is **237 W/m·°C** has a flat

bottom with diameter **15 cm** and thickness **0.4 cm**. Heat is transferred steadily to boiling water in the pan through its bottom at a rate of **800 W**. If the inner surface of the bottom of the pan is at **105°C**, determine the

temperature of the outer surface of the bottom of the pan.

Institute of Science & Technology

Abdelhafid Boussouf University Center – Mila

(Figure 1–**1)**

Exercise 1.3

A **5-cm-external-diameter**, **10-m-long** hot-water pipe at **80°C** is losing heat to the surrounding air at **5°C** by natural convection with a heat transfer coefficient of **25 W/m² ·°C**. Determine the rate of heat loss from the pipe by natural convection.

Tutorial One

| *Basics of Heat Transfer* |

Exercise 1.4

A **2-m-long**, **0.3-cm-diameter** electrical wire extends across a room at **15°C**, as shown in **Fig. 1–3**. Heat is generated in the wire as a result of resistance heating, and the surface temperature of the wire is measured to be **152°C** in steady operation. Also, the voltage drop and electric current through the wire are measured to be **60 V** and **1.5 A**, respectively. Disregarding any heat transfer by radiation, determine the convection heat transfer coefficient for heat transfer between the outer surface of the wire and the air in the room.

Exercise 1.5

Using the conversion factors between **W** and **Btu/h**, **m** and **ft**, and **K** and **R**, express the Stefan–Boltzmann **constant σ = 5.67 x 10⁻⁸ W/m²·K⁴ in the English unit Btu/h · ft²·R⁴**.

Exercise 1.6

Consider a person standing in a room maintained at **22°C** at all times. The inner surfaces of the walls, floors, and the ceiling of the house are observed to be at an average temperature of **10°C** in winter and **25°C** in summer. Determine the rate of radiation heat transfer between this person and the surrounding surfaces if the exposed surface area and the average outer surface temperature of the person are **1.4 m²** and **30°C**, respectively (**Fig. 1–4)**.

Exercise 1.7

The inner and outer surfaces of a **25-cm-thick** wall in summer are at **27°C** and **44°C**, respectively. The outer surface of the wall exchanges heat by radiation with surrounding surfaces at **40°C**, and convection with ambient air also at **40°C** with a convection heat transfer coefficient of **8 W/m² ·°C**. Solar radiation is incident on the surface at a rate of **150 W/m²**.

If both the emissivity and the solar absorptivity of the outer surface are **0.8**, determine the effective thermal conductivity of the wall.

Exercise 1.8

The heat flux through a wood slab **50 mm** thick, whose inner and outer surface temperatures are **40** and **20°C**, respectively, has been determined to be **40 W/m²**. What is the thermal conductivity of the wood?

Exercise 1.9

A square isothermal chip is of width **w = 5 mm** on a side and is mounted in a substrate such that its side and back surfaces are well insulated; the front surface is exposed to the flow of a coolant at **T[∞] = 15°C**. From reliability considerations, the chip temperature must not exceed **T = 85°C**.

(Figure 1–**6)**

- If the coolant is air and the corresponding convection coefficient is **h = 200 W/m²**⋅**K**, what is the maximum allowable chip power?
- If the coolant is a dielectric liquid for which **h = 3000 W/m²**⋅**K**, what is the maximum allowable power?