Series Nº4

Exercise 1:

Single Color Light Radiation Frequency $\upsilon = 5.1 \cdot 10^{14}$ Hz.

1- Calculate the wave length λ , wave number υ , period **T**, and photon energy carried by this light radiation.

2- This light radiation hits a metal plate of zinc Zn with $E_0(Zn) = 3.4$ ev. Does photoelectric action occur?

3- This light radiation hits a metal plate of cesium Cs with $E_0(Cs) = 1.9$ ev. Does photoelectric action occur? If so, calculate the kinetic energy of the liberated electron, then calculate the speed of the electrons freed from the cesium metal.

given : $\mathbf{h} = 6,62 .10^{-34}$ J.s, $\mathbf{C} = 3 .10^8$ m/s, $\mathbf{me} = 9,1 .10^{-31}$ Kg

Exercise 2:

1- Calculate the wavelength approval of the first line and the boundary line of series: Lyman and Brackett.

2- Calculate the ionizing energy of the hydrogen atom in the first excited state.

3- Calculate radius \mathbf{r}_n , speed Vn and energy En for n = 1, 2, 3 according to Bohr model.

4- Represent on the energy diagram the transitions of the first line of absorption spectrum in the Lyman series and the second line of emission spectrum in the Paschen series.

5- We have transitions a and b shown on the following diagram, if $\frac{\Delta E_b}{\Delta E_a} = \frac{25}{9}$, Find the number **n** indicate on the energy diagram, then name each spectral series

For each transition.

Exercise 3:

1- If the wavelength of one line of hydrogen atom spectrum is $\lambda = 4868 A^{\circ}$, at what energy level the electron transits

2- It is assumed that this transitions was made on Hydrogenoid of ₃Li.

a- Write the reactions that lead to the corresponding hydrogen.

b- Calculate the wavelength corresponding to the same previous transition.

c- Calculate the energy for the previous transition in two ways.

Exercise 4:

Considering that the hydrogenoid $_zX^{+q}$ is in a state of second excitation with total energy

En=-24,17ev. find the number of charge Z and charge q for this hydrogenoid.

1- Calculate the wavelength λ_{χ^+q} for the assumed transition $(3 \rightarrow 4)$

2- Find the relation between $\lambda_{\rm H}$ and $\lambda_{\chi^{+q}}$ then calculate $\lambda_{\rm H}$ for transition $(3 \rightarrow 4)$

3- Calculate the ionization energy of H and $_zX^{+q}$ in the fundamental state, then in the second excitation.

4- find the quantum numbers n, l, m, s possible for the electron hydrogenoid $_zX^{+q}$ in second excitation. Then calculate the radius **a** and **b** according to Sommerfield.

Exercise 5:

1- Calculate the wavelength for the following cases

a- the weight of a human being is m = 65 kg and its speed is v = 5 km/h

b- Atom 63 Cu moves in vacuum by kinetic energy Ec = 7eV.

c- Electron of hydrogen atom in third excitation.

2- We consider electron to be its kinetic energy $Ec = 10^2 \text{ eV}$ and the absolute uncertainty of speed is 10^{-5} m/, calculate relative uncertainty on this speed and then absolute uncertainty on the position x Δ .

3- Find the quantum numbers n,l,m,s of the main electronic layers M, N.

4- Find quantum numbers n, l for electronic layers ψ_{4d} , ψ_{4f} , ψ_{3p} , ψ_{2s} .

5- Write wave functions according to secondary electronic layers ψ_{52} , $\psi_{6331/2}$, ψ_{600} , $\psi_{1111/2}$