Series N° 2

Exercise 1:

The electron package of the cathode tube is deviated under the influence of an electric field E. The deviation of this package (after measuring the amount of deviation Y_S) resulting from the electric field $E = 3.6 \cdot 10^4 V/m$ is abolished by the opposite of the magnetic field $B = 9.10^{-4}$ Tesla, which affects in the same electric field vacuum.

1. Find the expression for the e/m_e ratio of electrons in terms of E, B, L, Ys.

2. determine the speed and kinetic energy of the electrons.

3. What is the value of the U voltage accelerator U that can be applied between the cathode and the anode so that the electrons acquire this Kinetic energy?

 $e = 1.6.10^{-19} C$, $me = 9.1.10^{-31} Kg$

Exercise 2 :

Using the device used in *Millikan's* experiment, we observe the free fall of a spherical oil droplet in the air at a constant speed equal to $v_1 = 3$. 10⁻⁴ m/s.

1. with negligent the Archimedes thruster. Calculate the radius of this droplet, its size and mass.

In the presence of the electric field E_1 , the droplet rises toward the positive pole of the capacitor (upward) at a new speed $V_2 = 15,097. \ 10^{-4} \text{ m/s}$

2. What is the q_1 charge value that the droplet acquires if you know that the electric field value is $E_1 = 3.106 \text{ v/m}$.

3. The electric charge of the droplet changes to q2. the droplet stabilizes between the two capacitor plates, when the value of the electric field $E_2 = 331554.6 \text{ V/m}$. Calculate the value of the new electric charge q_2 .

 $g = 9.81 \text{ m.s}^{-2}$, $\rho_h = 900 \text{ K} \text{ g/m}^3$, $\eta = 17.3.10^{-6} \text{ Kg.m}^{-1}.\text{s}^{-1}$

Exercise 3:

Inside the mass spectrometer of *Bainbridge* observed that element X has 3 isotopes The ions collide with the photographic board at a distance of: 41,50 cm; 45,65 cm and 37, cm from the collision point of the ions ${}^{12}C^+$ where the inside of the speed filter is applied electric field $E = 5.104 \text{ V.m}^{-1}$.

- 1. Calculate the value of the appropriate magnetic field that allows ions with a speed of 2.10^5 m.s⁻¹ pass to the filter without deviation.
- 2. Calculate the magnetic field inside the analyser knowing that the distance between the exit point from the speed filter and the point of collision of ${}^{12}C^+$ ions is 49.80 cm.
- 3. Select the X element and its isotopes knowing they are lighter than carbon

 $N_A = 6.023.10^{23}$; $e=1.6.10^{-19}C$