University Center Abdelhafid Bousouf - MilaInstitute of Science and TechnologySubject: ThermodynamicsFirst Year STAcademic Year: 2024/2025

Series Nº 4

Exercise 1:

Without performing calculations, deduce and discuss the sign of the entropy change for the following reactions:

1) $CH_3OH_{(l)} + \frac{3}{2}O_{2(g)} \rightarrow 2H_2O(l) + CO_{2(g)}$ 2) $2H_2O(l) \rightarrow O_{2(g)} + 2H_{2(g)}$ 3) $CO_{(g)} + \frac{1}{2}O_{2(g)} \rightarrow CO_{2(g)}$ 4) $H_2O(l) \rightarrow H_2O(g)$

Exercise 2:

Calculate the change in entropy of acetic acid when one mole of it freezes at a pressure of 1 atm and discuss the sign of the result.

Given:

$$\Delta H_{fus(CH_3COOH)} = +69 J. g^{-1}, \qquad T_{fus(CH_3COOH)} = 16,6^{\circ}C$$

Exercise 3:

One mole of an ideal diatomic gas undergoes a series of reversible transformations:

- 1. Isochoric cooling from state A to B, where its temperature is halved.
- 2. Adiabatic compression to state C.
- 1. Isobaric heating to state D.

1. Isothermal expansion returning it to the initial state.

The table below provides the known parameters:

- Determine the unknown coordinates and represent these transformations on a Clapeyron diagram.
- Calculate the entropy change for each transformation and for the entire cycle using the data provided in the table.

State	T (K)	V (L)	P (atm)
А	600	5	2
В	-	-	1
С	578	0.96	-
D	-	1	10

Exercise 4:

- 1. Calculate the change in entropy for the formation of 1 mole of liquid water from its elements at 25°C and 1 atm pressure. Interpret the result.
- 2. Calculate the same variable for the formation of 1 mole of liquid water at 80°C and 1 atm pressure. Interpret the result.

Given:

compound	$s_{298}^{\circ}(J.K^{-1}mol^{-1})$	$Cp_{298}(J.K^{-1}mol^{-1})$
H_2	130 ,45	28,42
O_2	204,83	29,16
$H_2O(l)$	69,85	75,22

Assume that the heat capacity values are constant over the given temperature range.