University Center Mila. Institute of Mathematics and Computer Science. 1^{st} Year Mathematics (Algebra 1)

Final exam

Exercise 1. (4 pts)

1. Let's consider a propositional language where:

- P means "Rima is happy",
- Q means "Rima paints a picture",
- R means "Khaled is happy".

Formalize the following sentences:

- (a) "If Rima is happy and paints a picture, then Khaled isn't happy"
- (b) "If Rima is happy, then she paints a picture"
- 2. Determine whether each statement is true or false
 - (a) $7 < 5 \lor 3 > 1$
 - (b) $3 \le 9$
 - (c) $(-1)^{50} = 1 \wedge (-1)^{99} = -1$
 - (d) $7 \neq 3 \lor 9$ is a prime number
 - $(e) -5 \ge -11$
 - (f) $4.5 \le 5.4$
 - (g) 2 is an odd number or 2 is an even number

Exercise 2. (4 pts) Let $f : [-1;1] \longrightarrow \mathbb{R}$ be a function defined by $f(x) = \sqrt{1-x^2}$.

- 1. Determine $f\{\frac{-1}{2}, \frac{1}{2}, 1\}$ and $f^{-1}\{\frac{1}{2}, 2\}$.
- 2. Is the function f injective? Is it surjective?
- 3. Show that the restriction $g: [-1; 0] \longrightarrow [0; 1]$, where g(x) = f(x), is bijective.
- 4. Determine the inverse function g^{-1} .

Exercise 3. (4 pts)

Let $\mathcal R$ be the binary relation defined on $\mathbb R$ by:

 $\forall x, y \in \mathbb{R}, \quad x\mathcal{R}y \text{ if and only if } x^4 - y^4 = x^2 - y^2.$

- 1. Show that \mathcal{R} is an equivalence relation on \mathbb{R} .
- 2. Determine the equivalence class of 0, and deduce the equivalence class of 1.

Exercise 4. (8 pts) Let $G = \mathbb{R} - \{-2\}$ and * be the internal composition law in G defined by:

$$\forall x, y \in G, \quad x * y = xy + 2(x + y) + 2.$$

- 1. Show that (G, *) is an abelian group.
- 2. Let $H = \{x \in \mathbb{R} \mid x > -2\}$. Show that (H, *) is a subgroup of (G, *).
- 3. Let the application f be defined from the group (G, *) to the multiplicative group $(\mathbb{R} \{0\}, \times)$ by:

$$f(x) = x + 2$$

Show that f is an isomorphism from the group (G, *) to $(\mathbb{R} - \{0\}, \times)$.

Good luck.