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4.5 FExercise Solutions

Solution 4.1.
Let P(z) = az® + ba? + cx + d.

Given:

So, d =1.

P(l)=a+b+4+c+d=0

Substitute d = 1:
a+b+c+1=0=a+b+c=-1

P(-1)=—a+b—c+d=-2

Substitute d = 1:

—a+b—c+1l=-2=—-a+b—c=-3

P(2)=8a+4b+2c+d=4

Substitute d = 1:

8a+4b+2c+1=4=8a+4b+2c=3

Now solve the system of equations:

Froma+b+c= -1 and —a+b—c= —3: Add these equations:

20=—-4=b=-2

Substitute b= —2 intoa+b+c= —1:

a—2+c=—-1=a+c=1
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Substitute b = —2 into 8a + 4b + 2¢ = 3:
8a—8+2c=3=8a+2c=11

Now solve a+c=1 and 8a + 2¢ = 11:

Multiply a +c =1 by 2:
2a+2c =2

Subtract from 8a + 2¢ = 11:
3
a a=g

Substitute a = g mtoa—+c=1:

Solution 4.2.

1. For A=3X"4+4X?2+1and B= X?+2X +3:
Q = 3X°,
R=—6X?+1.
2. For A=3X°4+2X*—X?24+1and B= X3+ X +2:
Q=3X%2-X,
R=2X’>+X +1.
3 ForA=X*—X*+X—-2and B=X?—-2X +4:

Q=X>
R=—-X?%+3X —10.
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Solution 4.3.

1. Suppose P | @Q and Q | R. Then there exist polynomials A(X), B(X),C(X) €
A[X] such that Q = PA and R = QB. Substituting (Q = PA into R = @B,
we get R = P(AB), which implies P | R.

2. If P| Q and P | R, then there exist polynomials A(X), B(X) € A[X] such
that Q@ = PA and R = PB. Therefore, @ + R = PA+ PB = P(A+ B),
which shows that P | (Q + R).

3. Assume P | @Q and Q # 0. Then Q@ = PA for some polynomial A(X),
implying deg(Q) = deg(PA) = deg(P) + deg(A). Since deg(Q) > deg(P),
we conclude deg(P) < deg(Q).

4. Given P | @Q and R | S, there ezist polynomials A(X), B(X),C(X),D(X) €
A[X] such that Q@ = PA and S = RC. Therefore, QS = (PA)(RC) =
(PR)(AC), which means PR | QS.

5. If P | Q, then there exists a polynomial A(X) € A[X] such that Q = PA.
Thus, Q™ = (PA)" = P"A"™, which shows P™ | Q™ for alln > 1.

Solution 4.4.

1. Part 1:
Claim: If P | Q and Q | P, then P and Q are associated.
Proof:
If P | Q, then there exists A € A[X] such that Q = P - A.
If Q| P, then there exists B € B[X] such that P = @ - B.
Combining these, (Q = P-A and substituting in P = Q-B, we get P = P-A-B.
Since P # 0, dividing by P gives 1 = A - B, implying A and B are units.

Therefore, P and Q) are associated.

2. Part 2:

Claim: If P is associated to R and Q is associated to S, then P | QQ <~
R|S.

Proof:
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Assume P=u-R and Q =wv - S for units u,v € A[X].

P|Q impliesQ =P-A, soQ =u-R-A.

R| S implies S=R-B,soQ =v-S=v-R-B.

Therefore, P | Q@ <= R | S because u-R-A =v-R-B implies u = v
(since R #0).

Solution 4.5.

1. Let P(X) = X3—X?—-X -2 and Q(X) = X5 —2X*+ X2 - X — 2. Apply
the Fuclidean algorithm:

Q(X)=P(X) - X?+ (—2X"+3X* —2),

1
P(X)=(-2X*+3X*-2). i) (23 o),
2 2 2 2
Continuing this process, we find:
5,9 3
ged(P(X), Q(X)) = X7 - ;X —2.

Therefore, the ged of X? — X? — X —2 and X° —2X* + X2 — X — 2 is
X2 -3X -2

2. Let R(X) = X*+X3—2X+1 and S(X) = X3+ X +1. Apply the Euclidean

algorithm:
R(X)=S8(X) X +(X*-2X),
S(X)=(X*-2X)- X+ (X +1),
X?2X=(X+1)- (X —-2).
Thus,

ecd(R(X), S(X)) = X + 1.
Therefore, the ged of X* + X3 —2X 4+ 1 and X> + X +1 is X + 1.

Solution 4.6.

1. Reducible polynomials in K[X] have degree greater than or equal to 2. Let
p(X) be a polynomial in K[X]. Consider the cases when the degree of p(X)

1s less than 2:
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o [f the degree is 0, then p(X) is a constant polynomial. Constant poly-
nomials are not considered reducible in the sense of factorization into

non-constant polynomaials.

o [f the degree is 1, then p(X) is of the form aX + b, where a # 0. Poly-
nomials of degree 1 cannot be factored into smaller degree polynomials

in K[X]; hence, they are irreducible.

Therefore, polynomials that are reducible must have a degree greater than or

equal to 2.

2. All polynomials of degree 1 are irreducible. A polynomial of degree 1 is of
the form p(X) = aX + b, where a # 0. Such polynomials cannot be factored

into polynomials of smaller degree in K[X|, and hence they are irreducible.
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