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4.5 Exercise Solutions

Solution 4.1.

Let P (x) = ax3 + bx2 + cx+ d.

Given:
P (0) = d = 1

So, d = 1.

P (1) = a+ b+ c+ d = 0

Substitute d = 1:
a+ b+ c+ 1 = 0⇒ a+ b+ c = −1

P (−1) = −a+ b− c+ d = −2

Substitute d = 1:

−a+ b− c+ 1 = −2⇒ −a+ b− c = −3

P (2) = 8a+ 4b+ 2c+ d = 4

Substitute d = 1:

8a+ 4b+ 2c+ 1 = 4⇒ 8a+ 4b+ 2c = 3

Now solve the system of equations:

From a+ b+ c = −1 and −a+ b− c = −3: Add these equations:

2b = −4⇒ b = −2

Substitute b = −2 into a+ b+ c = −1:

a− 2 + c = −1⇒ a+ c = 1
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Substitute b = −2 into 8a+ 4b+ 2c = 3:

8a− 8 + 2c = 3⇒ 8a+ 2c = 11

Now solve a+ c = 1 and 8a+ 2c = 11:

Multiply a+ c = 1 by 2:
2a+ 2c = 2

Subtract from 8a+ 2c = 11:
6a = 9⇒ a =

3

2

Substitute a = 3
2
into a+ c = 1:

3

2
+ c = 1⇒ c = −1

2

So, a = 3
2
, b = −2, c = −1

2
, d = 1.

Therefore, the polynomial P (x) is:

P (x) =
3

2
x3 − 2x2 − 1

2
x+ 1

Solution 4.2.

1. For A = 3X5 + 4X2 + 1 and B = X2 + 2X + 3:

Q = 3X3,

R = −6X2 + 1.

2. For A = 3X5 + 2X4 −X2 + 1 and B = X3 +X + 2:

Q = 3X2 −X,

R = 2X2 +X + 1.

3. For A = X4 −X3 +X − 2 and B = X2 − 2X + 4:

Q = X2,

R = −X3 + 3X − 10.
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Solution 4.3.

1. Suppose P | Q and Q | R. Then there exist polynomials A(X), B(X), C(X) ∈
A[X] such that Q = PA and R = QB. Substituting Q = PA into R = QB,
we get R = P (AB), which implies P | R.

2. If P | Q and P | R, then there exist polynomials A(X), B(X) ∈ A[X] such
that Q = PA and R = PB. Therefore, Q + R = PA + PB = P (A + B),
which shows that P | (Q+R).

3. Assume P | Q and Q 6= 0. Then Q = PA for some polynomial A(X),
implying deg(Q) = deg(PA) = deg(P ) + deg(A). Since deg(Q) ≥ deg(P ),
we conclude deg(P ) ≤ deg(Q).

4. Given P | Q and R | S, there exist polynomials A(X), B(X), C(X), D(X) ∈
A[X] such that Q = PA and S = RC. Therefore, QS = (PA)(RC) =

(PR)(AC), which means PR | QS.

5. If P | Q, then there exists a polynomial A(X) ∈ A[X] such that Q = PA.
Thus, Qn = (PA)n = P nAn, which shows P n | Qn for all n ≥ 1.

Solution 4.4.

1. Part 1:

Claim: If P | Q and Q | P , then P and Q are associated.

Proof:

If P | Q, then there exists A ∈ A[X] such that Q = P · A.

If Q | P , then there exists B ∈ B[X] such that P = Q ·B.

Combining these, Q = P ·A and substituting in P = Q·B, we get P = P ·A·B.

Since P 6= 0, dividing by P gives 1 = A ·B, implying A and B are units.

Therefore, P and Q are associated.

2. Part 2:

Claim: If P is associated to R and Q is associated to S, then P | Q ⇐⇒
R | S.

Proof:
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Assume P = u ·R and Q = v · S for units u, v ∈ A[X].

P | Q implies Q = P · A, so Q = u ·R · A.

R | S implies S = R ·B, so Q = v · S = v ·R ·B.

Therefore, P | Q ⇐⇒ R | S because u · R · A = v · R · B implies u = v

(since R 6= 0).

Solution 4.5.

1. Let P (X) = X3−X2−X − 2 and Q(X) = X5− 2X4 +X2−X − 2. Apply
the Euclidean algorithm:

Q(X) = P (X) ·X2 + (−2X4 + 3X2 − 2),

P (X) = (−2X4 + 3X2 − 2) ·
(
−1

2
X +

3

2

)
+

(
5

2
X2 − 3

2
X − 2

)
.

Continuing this process, we find:

gcd(P (X), Q(X)) =
5

2
X2 − 3

2
X − 2.

Therefore, the gcd of X3 − X2 − X − 2 and X5 − 2X4 + X2 − X − 2 is
5
2
X2 − 3

2
X − 2.

2. Let R(X) = X4+X3−2X+1 and S(X) = X3+X+1. Apply the Euclidean
algorithm:

R(X) = S(X) ·X + (X2 − 2X),

S(X) = (X2 − 2X) ·X + (X + 1),

X2 − 2X = (X + 1) · (X − 2).

Thus,
gcd(R(X), S(X)) = X + 1.

Therefore, the gcd of X4 +X3 − 2X + 1 and X3 +X + 1 is X + 1.

Solution 4.6.

1. Reducible polynomials in K[X] have degree greater than or equal to 2. Let
p(X) be a polynomial in K[X]. Consider the cases when the degree of p(X)

is less than 2:
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• If the degree is 0, then p(X) is a constant polynomial. Constant poly-
nomials are not considered reducible in the sense of factorization into
non-constant polynomials.

• If the degree is 1, then p(X) is of the form aX + b, where a 6= 0. Poly-
nomials of degree 1 cannot be factored into smaller degree polynomials
in K[X]; hence, they are irreducible.

Therefore, polynomials that are reducible must have a degree greater than or
equal to 2.

2. All polynomials of degree 1 are irreducible. A polynomial of degree 1 is of
the form p(X) = aX + b, where a 6= 0. Such polynomials cannot be factored
into polynomials of smaller degree in K[X], and hence they are irreducible.
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