
Chapter 4

Rings of Polynomials

Introduction

Throughout this chapter we shall assume that A is a commutative ring with iden-
tity 1 6= 0.

4.1 Definitions

Definition 4.1.1.

Any expression of the form

P (x) =
n∑
i=0

aix
i = a0 + a1x+ a2x

2 + · · ·+ anx
n,

where ai ∈ A and an 6= 0, is called a polynomial over A with indeterminate x.

1. The elements a0, a1, . . . , an are called the coefficients of P .

2. The coefficient an is called the leading coefficient.

3. A polynomial is called monic if the leading coefficient is 1.

4. If n is the largest nonnegative number for which an 6= 0, we say that the
degree of P is n and write degP (x) = n.

5. If f = 0 is the zero polynomial, then the degree of P is defined to be −∞.
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6. We will denote the set of all polynomials with coefficients in a ring A by
A[x].

7. Two polynomials are equal exactly when their corresponding coefficients are
equal; that is, if we let

p(x) = a0 + a1x+ · · ·+ anx
n

and
q(x) = b0 + b1x+ · · ·+ bnx

n,

then p(x) = q(x) if and only if ai = bi for all i = 1, 2, ..., n.

To show that the set of all polynomials forms a ring, we must first define addition
and multiplication. We define the sum of two polynomials as follows. Let

p(x) = a0 + a1x+ · · ·+ anx
n

and
q(x) = b0 + b1x+ · · ·+ bmx

m.

Then the sum of p(x) and q(x) is

p(x) + q(x) = c0 + c1x+ · · ·+ ckx
k,

where ci = ai + bi for each i. We define the product of p(x) and q(x) to be

p(x)q(x) = c0 + c1x+ · · ·+ cm+nx
m+n,

where

ci =
i∑

k=0

akbi−k = a0bi + a1bi−1 + · · ·+ ai−1b1 + aib0.

for each i. Notice that in each case some of the coefficients may be zero.

Example 4.1.1.

Suppose that
p(x) = 3 + 0x+ 0x2 + 2x3 + 0x4

and
q(x) = 2 + 0x− x2 + 0x3 + 4x4
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are polynomials in Z[x]. If the coefficient of some term in a polynomial is zero,
then we usually just omit that term. In this case, we would write

p(x) = 3 + 2x3 and q(x) = 2− x2 + 4x4.

The sum of these two polynomials is

p(x) + q(x) = 5− x2 + 2x3 + 4x4.

The product,

p(x)q(x) = (3 + 2x3)(2− x2 + 4x4) = 6− 3x2 + 4x3 + 12x4 − 2x5 + 8x7,

can be calculated either by determining the ci’s in the definition or by simply mul-
tiplying polynomials in the same way as we have always done.

Theorem 4.1.1.

Let A be a commutative ring with identity. Then A[x] is a commutative ring with
identity.

Proof 4.1.1.

Our first task is to show that A[x] is an abelian group under polynomial addition.
The zero polynomial, f(x) = 0, is the additive identity. Given a polynomial p(x) =∑n

i=0 aix
i, the inverse of p(x) is easily verified to be

−p(x) =
n∑
i=0

(−ai)xi = −
n∑
i=0

aix
i.

Commutativity and associativity follow immediately from the definition of poly-
nomial addition and from the fact that addition in A is both commutative and
associative.

To show that polynomial multiplication is associative, let

p(x) =
m∑
i=0

aix
i, q(x) =

n∑
i=0

bix
i, r(x) =

p∑
i=0

cix
i.

Then

[p(x)q(x)]r(x) =

[(
m∑
i=0

aix
i

)(
n∑
i=0

bix
i

)](
p∑
i=0

cix
i

)

=

[
m+n∑
i=0

(
i∑

j=0

ajbi−j

)
xi

](
p∑
i=0

cix
i

)
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=

m+n+p∑
i=0

(
i∑

j=0

(
j∑

k=0

akbj−k

)
ci−j

)
xi

=

m+n+p∑
i=0

( ∑
j+k+l=i

ajbkcl

)
xi

=

m+n+p∑
i=0

(
i∑

j=0

aj

(
i−j∑
k=0

bkci−j−k

))
xi

=

(
m∑
i=0

aix
i

)(
n+p∑
i=0

(
i∑

j=0

bjci−j

)
xi

)

=

(
m∑
i=0

aix
i

)[(
n∑
i=0

bix
i

)(
p∑
i=0

cix
i

)]
= p(x)[q(x)r(x)].

The commutativity and distribution properties of polynomial multiplication are
proved in a similar manner. We shall leave the proofs of these properties as an
exercise.

Proposition 4.1.1.

Let p(x) and q(x) be polynomials in A[x], where A is an integral domain. Then

1. deg(p(x)q(x)) = deg(p(x)) + deg(q(x))

2. deg(p(x) + q(x)) ≤ max(deg(p(x)), deg(q(x)))

Furthermore, A[x] is an integral domain.

Proof 4.1.2.

1. Suppose that we have two nonzero polynomials

p(x) = amx
m + · · ·+ a1x+ a0

and
q(x) = bnx

n + · · ·+ b1x+ b0

with am 6= 0 and bn 6= 0. The degrees of p and q are m and n, respectively.
The leading term of p(x)q(x) is ambnxm+n, which cannot be zero since A is
an integral domain; hence, the degree of p(x)q(x) is m+n, and p(x)q(x) 6= 0.
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Since p(x) 6= 0 and q(x) 6= 0 imply that p(x)q(x) 6= 0, we know that A[x]

must also be an integral domain.

2. Trivial.

Let U(A) denote the units (invertible elements) of A.

Proposition 4.1.2.

If A is an integral domain, then the units of A[X] are exactly the constant poly-
nomials P = a where a ∈ U(A).

Proof 4.1.3.

Let P be invertible in A[X]. There exists Q ∈ A[X] such that PQ = 1. Thus,
deg(P ) + deg(Q) = 0 implies deg(P ) = deg(Q) = 0. Hence, P and Q are constant
invertible elements.

4.2 Polynomial Arithmetic

4.2.1 Associated Polynomials

Definition 4.2.1.

Two polynomials P and Q in A[X] are said to be associated if there exists a ∈ U(A)

such that P = aQ.

Example 4.2.1.

The set of polynomials associated with X2 + 1 in Z[X] is

{X2 + 1,−(X2 + 1)}

since the only units in Z are 1 and −1.

Proposition 4.2.1.

1. The relation "being associated" is an equivalence relation on A[X].

2. If P and Q are associated and have the same leading coefficient, then P = Q.

3. If A is a field, then every polynomial P is associated with a unique unitary
polynomial.
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4.2.2 Division

Definition 4.2.2.

Let P,Q ∈ A[X]. We say that P divides Q, denoted as P |Q, if there exists
R ∈ A[X] such that Q = PR.

Example 4.2.2.

1. The polynomial X − 1 divides X2 − 1 in Z[X].

2. The polynomial X − 3 does not divide X2 − 1 in Z[X].

Proposition 4.2.2.

Let P,Q,R, S ∈ A[X].

1. If P |Q and Q|R, then P |R.

2. If P |Q and P |R, then P |(Q+R).

3. If P |Q and Q 6= 0, then deg(P ) ≤ deg(Q).

4. If P |Q and R|S, then PR|QS.

5. If P |Q, then P n|Qn for all n ≥ 1.

Proposition 4.2.3.

Let P,Q,R, S ∈ A[X].

1. If P |Q and Q|P , then P and Q are associated.

2. If P is associated with R and Q is associated with S, then P |Q ⇐⇒ R|S.

4.2.3 Euclidean Division

Theorem 4.2.1. (Euclidean Division)
Let A,B ∈ K[X] be two polynomials with coefficients in a field K such that B 6=
0. Then there exists a unique pair (Q,R) of K[X] such that A = BQ + R and
deg(R) < deg(B).

Example 4.2.3.

Let A = x3 + x+ 1 and B = x+ 1. Then we have A = B(x2 − x+ 2)− 1.
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Recall that a subset I of a ring A is an ideal if the following two conditions hold:

1. (I,+) is a subgroup of (A,+),

2. For every a ∈ A, aI ⊂ I. In other words, for all a ∈ A and x ∈ I, ax ∈ I.

Theorem 4.2.2.

The ring K[X] is principal (In other words, every ideal I ⊆ K[X] can be written
as I = (P (X)) for some P (X) ∈ K[X]).

Proof 4.2.1.

Let I be an ideal of K[X] containing a nonzero polynomial. We want to show that
I is principal, i.e., there exists a polynomial P such that I is exactly the set of
multiples of P . Let D = {deg(S) | S ∈ I, S 6= 0}. This is a non-empty subset
of N, so it has a minimum n. Let P be a polynomial of degree n in I. Since I
is an ideal, all multiples of P are in I. Conversely, we want to show that every
element of I is a multiple of P . So let A ∈ I. We know there exist Q,R such that
A = PQ + R with deg(R) < n. Since −PQ ∈ I, we have R = A − PQ ∈ I. As
deg(R) < n, by the definition of n, we have R = 0, i.e., A = PQ, and A is indeed
a multiple of P .

4.2.4 Irreducible Polynomials

Recall that the invertible polynomials in A[X] are the constant polynomials P =

a ∈ U(A). Thus, since all non-zero elements in a field are invertible, the invertible
polynomials in K[X] are the non-zero constant polynomials.

Definition 4.2.3.

A polynomial P ∈ K[X] is called irreducible if it is not invertible and if the equality
P = QR implies that either Q or R is invertible.

We say that a polynomial P is reducible if it is not irreducible.

Example 4.2.4.

1. The polynomial P (X) = 3 is invertible in Q[X], so it is not irreducible.

2. The polynomial P (X) = X2 +1 is irreducible if we consider it as an element
of R[X], but it is reducible if we consider it as an element of C[X], because
X2 + 1 = (X − i)(X + i).
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The notion of irreducible polynomials depends on the field K.

Proposition 4.2.4.

1. Reducible polynomials in K[X] have degree greater than or equal to 2.

2. All polynomials of degree 1 are irreducible.

4.2.5 Greatest Common Divisor

Let P1, ..., Pn ∈ K[X]. Since K[X] is principal, the ideal

< P1, ..., Pn >= {P1A1 + P2A2 + · · ·+ PnAn | A1, A2, . . . , An ∈ K[X]}.

is generated by a unique unit polynomial P . This polynomial is called the greatest
common divisor gcd of Pi and is denoted

P = gcd(P1, ..., Pn).

Proposition 4.2.5. Properties of gcd

Let P,Q ∈ K[X]. Then

1. gcd(P,Q) is a common divisor of P and Q.

2. If D is another common divisor of P and Q, then D divides gcd(P,Q).

3. There exist polynomials (U, V ) ∈ K[X]2 such that

PU +QV = gcd(P,Q).

Definition 4.2.4.

Let P,Q ∈ K[X]. We say that P and Q are coprime if gcd(P,Q) = 1.

In other words, if gcd(P,Q) = 1, then only non-zero constants divide both P and
Q.
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4.2.6 Factorization

Theorem 4.2.3.

Let P ∈ K[X] be a non-zero polynomial. Then P decomposes uniquely up to the
order of factors as:

P = αPα1
1 Pα2

2 ...Pαn
n

where Pi are distinct, unit, irreducible polynomials in K[X] and α ∈ K∗ is the
leading coefficient of P .

Example 4.2.5.

Consider the polynomial P = x2 + 1. Then P exists in both R[X] and C[X].
However, care must be taken as its factorization differs in these two rings:

1. P factors as (X − i) · (X + i) in C[X].

2. P is irreducible in R[X].

Proposition 4.2.6.

Let P and Q be two non-zero polynomials. Let P = aPα1
1 Pα2

2 ...Pαn
n and Q =

bP β1
1 P β2

2 ...P βn
n be their decompositions into irreducible factors where αi, βi ≥ 0 for

all i ∈ {1, ..., n}. Then

P divides Q⇔ αj ≤ βj for all 1 ≤ j ≤ n

.

4.3 Polynomial Functions

Let P ∈ K[X]. We denote by fP the polynomial function associated with P ,
defined as:

fP : K −→ K
x 7→ P (x).

Definition 4.3.1.

Let P ∈ K[X]. We say that x ∈ K is a root of P if fP (x) = 0 (or P (x) = 0).

Proposition 4.3.1.

Let P ∈ K[X] and α ∈ K. Then α is a root of P if and only if the polynomial
(x− α) divides P .
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Definition 4.3.2.

Let P ∈ K[X] and let α be a root of P . We say that α has multiplicity k if and
only if (x− α)k divides P and (x− α)k+1 does not divide P .

In other words, α is a root of P of multiplicity k if and only if
P = (x− α)kQ and Q(α) 6= 0.

Example 4.3.1.

To determine the multiplicity of a root, we can perform successive Euclidean di-
visions. Let P = x3 − 3x2 + 4. It can be verified easily that 2 is a root of P .
Furthermore, we find P (x) = (x− 2)2Q(x) with Q(x) = x+ 1 and Q(2) 6= 0.

Theorem 4.3.1.

Let P ∈ K[X] and α1, ..., αr be pairwise distinct roots of multiplicative k1, ..., kr,
respectively. Then, there exists Q ∈ K[X] such that

P = (x− α1)
k1(x− α2)

k2 ...(x− αr)krQ

and Q(αi) 6= 0 for all i. In particular, P has a degree of at least k1 + ...+ kr.
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