Chapter 4

Rings of Polynomials

Introduction

Throughout this chapter we shall assume that A is a commutative ring with identity $1 \neq 0$.

4.1 Definitions

Definition 4.1.1.

Any expression of the form

$$P(x) = \sum_{i=0}^{n} a_i x^i = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n,$$

where $a_i \in \mathbb{A}$ and $a_n \neq 0$, is called a polynomial over \mathbb{A} with indeterminate x.

- 1. The elements a_0, a_1, \ldots, a_n are called the coefficients of P.
- 2. The coefficient a_n is called the **leading coefficient**.
- 3. A polynomial is called **monic** if the leading coefficient is 1.
- 4. If n is the largest nonnegative number for which $a_n \neq 0$, we say that the degree of P is n and write deg P(x) = n.
- 5. If f = 0 is the zero polynomial, then the degree of P is defined to be $-\infty$.

- 6. We will denote the set of all polynomials with coefficients in a ring \mathbb{A} by $\mathbb{A}[x]$.
- 7. Two polynomials are equal exactly when their corresponding coefficients are equal; that is, if we let

$$p(x) = a_0 + a_1 x + \dots + a_n x^n$$

and

$$q(x) = b_0 + b_1 x + \dots + b_n x^n$$

then p(x) = q(x) if and only if $a_i = b_i$ for all i = 1, 2, ..., n.

To show that the set of all polynomials forms a ring, we must first define addition and multiplication. We define the sum of two polynomials as follows. Let

$$p(x) = a_0 + a_1 x + \dots + a_n x^n$$

and

$$q(x) = b_0 + b_1 x + \dots + b_m x^m.$$

Then the sum of p(x) and q(x) is

$$p(x) + q(x) = c_0 + c_1 x + \dots + c_k x^k,$$

where $c_i = a_i + b_i$ for each *i*. We define the product of p(x) and q(x) to be

$$p(x)q(x) = c_0 + c_1x + \dots + c_{m+n}x^{m+n},$$

where

$$c_i = \sum_{k=0}^{i} a_k b_{i-k} = a_0 b_i + a_1 b_{i-1} + \dots + a_{i-1} b_1 + a_i b_0.$$

for each i. Notice that in each case some of the coefficients may be zero.

Example 4.1.1.

Suppose that

$$p(x) = 3 + 0x + 0x^2 + 2x^3 + 0x^4$$

and

$$q(x) = 2 + 0x - x^2 + 0x^3 + 4x^4$$

are polynomials in $\mathbb{Z}[x]$. If the coefficient of some term in a polynomial is zero, then we usually just omit that term. In this case, we would write

$$p(x) = 3 + 2x^3$$
 and $q(x) = 2 - x^2 + 4x^4$.

The sum of these two polynomials is

$$p(x) + q(x) = 5 - x^{2} + 2x^{3} + 4x^{4}.$$

The product,

$$p(x)q(x) = (3+2x^3)(2-x^2+4x^4) = 6 - 3x^2 + 4x^3 + 12x^4 - 2x^5 + 8x^7,$$

can be calculated either by determining the c_i 's in the definition or by simply multiplying polynomials in the same way as we have always done.

Theorem 4.1.1.

Let \mathbb{A} be a commutative ring with identity. Then $\mathbb{A}[x]$ is a commutative ring with identity.

Proof 4.1.1.

Our first task is to show that $\mathbb{A}[x]$ is an abelian group under polynomial addition. The zero polynomial, f(x) = 0, is the additive identity. Given a polynomial $p(x) = \sum_{i=0}^{n} a_i x^i$, the inverse of p(x) is easily verified to be

$$-p(x) = \sum_{i=0}^{n} (-a_i) x^i = -\sum_{i=0}^{n} a_i x^i.$$

Commutativity and associativity follow immediately from the definition of polynomial addition and from the fact that addition in \mathbb{A} is both commutative and associative.

To show that polynomial multiplication is associative, let

$$p(x) = \sum_{i=0}^{m} a_i x^i, \quad q(x) = \sum_{i=0}^{n} b_i x^i, \quad r(x) = \sum_{i=0}^{p} c_i x^i.$$

Then

$$\begin{aligned} p(x)q(x)]r(x) &= \left[\left(\sum_{i=0}^{m} a_i x^i \right) \left(\sum_{i=0}^{n} b_i x^i \right) \right] \left(\sum_{i=0}^{p} c_i x^i \right) \\ &= \left[\sum_{i=0}^{m+n} \left(\sum_{j=0}^{i} a_j b_{i-j} \right) x^i \right] \left(\sum_{i=0}^{p} c_i x^i \right) \end{aligned}$$

$$=\sum_{i=0}^{m+n+p} \left(\sum_{j=0}^{i} \left(\sum_{k=0}^{j} a_k b_{j-k}\right) c_{i-j}\right) x^i$$
$$=\sum_{i=0}^{m+n+p} \left(\sum_{j+k+l=i}^{j} a_j b_k c_l\right) x^i$$
$$=\sum_{i=0}^{m+n+p} \left(\sum_{j=0}^{i} a_j \left(\sum_{k=0}^{i-j} b_k c_{i-j-k}\right)\right) x^i$$
$$=\left(\sum_{i=0}^{m} a_i x^i\right) \left(\sum_{i=0}^{n+p} \left(\sum_{j=0}^{i} b_j c_{i-j}\right) x^i\right)$$
$$=\left(\sum_{i=0}^{m} a_i x^i\right) \left[\left(\sum_{i=0}^{n} b_i x^i\right) \left(\sum_{i=0}^{p} c_i x^i\right)\right]$$
$$=p(x)[q(x)r(x)].$$

The commutativity and distribution properties of polynomial multiplication are proved in a similar manner. We shall leave the proofs of these properties as an exercise.

Proposition 4.1.1.

Let p(x) and q(x) be polynomials in $\mathbb{A}[x]$, where \mathbb{A} is an integral domain. Then

1.
$$\deg(p(x)q(x)) = \deg(p(x)) + \deg(q(x))$$

2. $\deg(p(x) + q(x)) \le \max(\deg(p(x)), \deg(q(x)))$

Furthermore, $\mathbb{A}[x]$ is an integral domain.

Proof 4.1.2.

1. Suppose that we have two nonzero polynomials

$$p(x) = a_m x^m + \dots + a_1 x + a_0$$

and

$$q(x) = b_n x^n + \dots + b_1 x + b_0$$

with $a_m \neq 0$ and $b_n \neq 0$. The degrees of p and q are m and n, respectively. The leading term of p(x)q(x) is $a_m b_n x^{m+n}$, which cannot be zero since \mathbb{A} is an integral domain; hence, the degree of p(x)q(x) is m+n, and $p(x)q(x) \neq 0$. Since $p(x) \neq 0$ and $q(x) \neq 0$ imply that $p(x)q(x) \neq 0$, we know that $\mathbb{A}[x]$ must also be an integral domain.

2. Trivial.

Let $\mathbb{U}(\mathbb{A})$ denote the units (invertible elements) of \mathbb{A} .

Proposition 4.1.2.

If \mathbb{A} is an integral domain, then the units of $\mathbb{A}[X]$ are exactly the constant polynomials P = a where $a \in \mathbb{U}(\mathbb{A})$.

Proof 4.1.3.

Let P be invertible in $\mathbb{A}[X]$. There exists $Q \in \mathbb{A}[X]$ such that PQ = 1. Thus, $\deg(P) + \deg(Q) = 0$ implies $\deg(P) = \deg(Q) = 0$. Hence, P and Q are constant invertible elements.

4.2 Polynomial Arithmetic

4.2.1 Associated Polynomials

Definition 4.2.1.

Two polynomials P and Q in $\mathbb{A}[X]$ are said to be associated if there exists $a \in \mathbb{U}(\mathbb{A})$ such that P = aQ.

Example 4.2.1.

The set of polynomials associated with $X^2 + 1$ in $\mathbb{Z}[X]$ is

$${X^2+1, -(X^2+1)}$$

since the only units in \mathbb{Z} are 1 and -1.

Proposition 4.2.1.

- 1. The relation "being associated" is an equivalence relation on $\mathbb{A}[X]$.
- 2. If P and Q are associated and have the same leading coefficient, then P = Q.
- 3. If A is a field, then every polynomial P is associated with a unique unitary polynomial.

4.2.2 Division

Definition 4.2.2.

Let $P, Q \in \mathbb{A}[X]$. We say that P divides Q, denoted as P|Q, if there exists $R \in \mathbb{A}[X]$ such that Q = PR.

Example 4.2.2.

- 1. The polynomial X 1 divides $X^2 1$ in $\mathbb{Z}[X]$.
- 2. The polynomial X 3 does not divide $X^2 1$ in $\mathbb{Z}[X]$.

Proposition 4.2.2.

Let $P, Q, R, S \in A[X]$.

- 1. If P|Q and Q|R, then P|R.
- 2. If P|Q and P|R, then P|(Q+R).
- 3. If P|Q and $Q \neq 0$, then $\deg(P) \leq \deg(Q)$.
- 4. If P|Q and R|S, then PR|QS.
- 5. If P|Q, then $P^n|Q^n$ for all $n \ge 1$.

Proposition 4.2.3.

Let $P, Q, R, S \in A[X]$.

- 1. If P|Q and Q|P, then P and Q are associated.
- 2. If P is associated with R and Q is associated with S, then $P|Q \iff R|S$.

4.2.3 Euclidean Division

Theorem 4.2.1. (Euclidean Division)

Let $A, B \in \mathbb{K}[X]$ be two polynomials with coefficients in a field \mathbb{K} such that $B \neq 0$. Then there exists a unique pair (Q, R) of $\mathbb{K}[X]$ such that A = BQ + R and $\deg(R) < \deg(B)$.

Example 4.2.3.

Let $A = x^3 + x + 1$ and B = x + 1. Then we have $A = B(x^2 - x + 2) - 1$.

Recall that a subset I of a ring \mathbb{A} is an ideal if the following two conditions hold:

- 1. (I, +) is a subgroup of (A, +),
- 2. For every $a \in A$, $aI \subset I$. In other words, for all $a \in A$ and $x \in I$, $ax \in I$.

Theorem 4.2.2.

The ring $\mathbb{K}[X]$ is principal (In other words, every ideal $I \subseteq \mathbb{K}[X]$ can be written as I = (P(X)) for some $P(X) \in \mathbb{K}[X]$).

Proof 4.2.1.

Let I be an ideal of $\mathbb{K}[X]$ containing a nonzero polynomial. We want to show that I is principal, i.e., there exists a polynomial P such that I is exactly the set of multiples of P. Let $D = \{\deg(S) \mid S \in I, S \neq 0\}$. This is a non-empty subset of N, so it has a minimum n. Let P be a polynomial of degree n in I. Since I is an ideal, all multiples of P are in I. Conversely, we want to show that every element of I is a multiple of P. So let $A \in I$. We know there exist Q, R such that A = PQ + R with $\deg(R) < n$. Since $-PQ \in I$, we have $R = A - PQ \in I$. As $\deg(R) < n$, by the definition of n, we have R = 0, i.e., A = PQ, and A is indeed a multiple of P.

4.2.4 Irreducible Polynomials

Recall that the invertible polynomials in $\mathbb{A}[X]$ are the constant polynomials $P = a \in \mathbb{U}(A)$. Thus, since all non-zero elements in a field are invertible, the invertible polynomials in $\mathbb{K}[X]$ are the non-zero constant polynomials.

Definition 4.2.3.

A polynomial $P \in \mathbb{K}[X]$ is called irreducible if it is not invertible and if the equality P = QR implies that either Q or R is invertible.

We say that a polynomial P is reducible if it is not irreducible.

Example 4.2.4.

- 1. The polynomial P(X) = 3 is invertible in $\mathbb{Q}[X]$, so it is not irreducible.
- The polynomial P(X) = X² + 1 is irreducible if we consider it as an element of ℝ[X], but it is reducible if we consider it as an element of ℂ[X], because X² + 1 = (X − i)(X + i).

The notion of irreducible polynomials depends on the field $\mathbb K.$

Proposition 4.2.4.

- 1. Reducible polynomials in $\mathbb{K}[X]$ have degree greater than or equal to 2.
- 2. All polynomials of degree 1 are irreducible.

4.2.5 Greatest Common Divisor

Let $P_1, ..., P_n \in \mathbb{K}[X]$. Since $\mathbb{K}[X]$ is principal, the ideal

$$< P_1, ..., P_n >= \{P_1A_1 + P_2A_2 + \dots + P_nA_n \mid A_1, A_2, \dots, A_n \in \mathbb{K}[X]\}.$$

is generated by a unique unit polynomial P. This polynomial is called the **greatest** common divisor gcd of P_i and is denoted

$$P = \gcd(P_1, \dots, P_n).$$

Proposition 4.2.5. *Properties of* gcd*Let* $P, Q \in \mathbb{K}[X]$ *. Then*

- 1. gcd(P,Q) is a common divisor of P and Q.
- 2. If D is another common divisor of P and Q, then D divides gcd(P,Q).
- 3. There exist polynomials $(U, V) \in \mathbb{K}[X]^2$ such that

$$PU + QV = \gcd(P, Q).$$

Definition 4.2.4.

Let $P, Q \in \mathbb{K}[X]$. We say that P and Q are coprime if gcd(P,Q) = 1.

In other words, if gcd(P,Q) = 1, then only non-zero constants divide both P and Q.

4.2.6 Factorization

Theorem 4.2.3.

Let $P \in \mathbb{K}[X]$ be a non-zero polynomial. Then P decomposes uniquely up to the order of factors as:

$$P = \alpha P_1^{\alpha_1} P_2^{\alpha_2} \dots P_n^{\alpha_n}$$

where P_i are distinct, unit, irreducible polynomials in $\mathbb{K}[X]$ and $\alpha \in \mathbb{K}^*$ is the leading coefficient of P.

Example 4.2.5.

Consider the polynomial $P = x^2 + 1$. Then P exists in both $\mathbb{R}[X]$ and $\mathbb{C}[X]$. However, care must be taken as its factorization differs in these two rings:

- 1. P factors as $(X i) \cdot (X + i)$ in $\mathbb{C}[X]$.
- 2. P is irreducible in $\mathbb{R}[X]$.

Proposition 4.2.6.

Let P and Q be two non-zero polynomials. Let $P = aP_1^{\alpha_1}P_2^{\alpha_2}...P_n^{\alpha_n}$ and $Q = bP_1^{\beta_1}P_2^{\beta_2}...P_n^{\beta_n}$ be their decompositions into irreducible factors where $\alpha_i, \beta_i \geq 0$ for all $i \in \{1, ..., n\}$. Then

P divides
$$Q \Leftrightarrow \alpha_j \leq \beta_j$$
 for all $1 \leq j \leq n$

4.3 Polynomial Functions

Let $P \in \mathbb{K}[X]$. We denote by f_P the polynomial function associated with P, defined as:

$$f_P: \mathbb{K} \longrightarrow \mathbb{K}$$
$$x \mapsto P(x).$$

Definition 4.3.1.

Let $P \in \mathbb{K}[X]$. We say that $x \in \mathbb{K}$ is a root of P if $f_P(x) = 0$ (or P(x) = 0).

Proposition 4.3.1.

Let $P \in \mathbb{K}[X]$ and $\alpha \in \mathbb{K}$. Then α is a root of P if and only if the polynomial $(x - \alpha)$ divides P.

Definition 4.3.2.

Let $P \in \mathbb{K}[X]$ and let α be a root of P. We say that α has multiplicity k if and only if $(x - \alpha)^k$ divides P and $(x - \alpha)^{k+1}$ does not divide P.

In other words, α is a root of P of multiplicity k if and only if $P = (x - \alpha)^k Q$ and $Q(\alpha) \neq 0$.

Example 4.3.1.

To determine the multiplicity of a root, we can perform successive Euclidean divisions. Let $P = x^3 - 3x^2 + 4$. It can be verified easily that 2 is a root of P. Furthermore, we find $P(x) = (x-2)^2 Q(x)$ with Q(x) = x + 1 and $Q(2) \neq 0$.

Theorem 4.3.1.

Let $P \in \mathbb{K}[X]$ and $\alpha_1, ..., \alpha_r$ be pairwise distinct roots of multiplicative $k_1, ..., k_r$, respectively. Then, there exists $Q \in \mathbb{K}[X]$ such that

$$P = (x - \alpha_1)^{k_1} (x - \alpha_2)^{k_2} \dots (x - \alpha_r)^{k_r} Q$$

and $Q(\alpha_i) \neq 0$ for all *i*. In particular, *P* has a degree of at least $k_1 + \ldots + k_r$.