Chapter 4

Rings of Polynomials

Introduction

Throughout this chapter we shall assume that A is a commutative ring with iden-
tity 1 # 0.

4.1 Definitions

Definition 4.1.1.

Any expression of the form

P(‘T) = Zaixi = ao+a1$+a2g}2+..._’_an$n’
=0

where a; € A and a, # 0, is called a polynomial over A with indeterminate x.

1. The elements ag, aq, . ..,a, are called the coefficients of P.
2. The coefficient a,, is called the leading coefficient.
3. A polynomial is called monzc if the leading coefficient is 1.

4. If n is the largest nonnegative number for which a, # 0, we say that the

degree of P is n and write deg P(x) = n.

5. If f =0 is the zero polynomial, then the degree of P is defined to be —oo.
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6. We will denote the set of all polynomials with coefficients in a ring A by
Alx].

7. Two polynomials are equal exactly when their corresponding coefficients are

equal; that is, if we let
p(r) = a0+ a1z + -+ a,z”

and
q(x) =bo + byx + - + bya”,

then p(z) = q(z) if and only if a; = b; for alli=1,2,....,n.

To show that the set of all polynomials forms a ring, we must first define addition

and multiplication. We define the sum of two polynomials as follows. Let
p(r) =ao+ a1z + -+ a,z”

and
q(z) = by +bix + - + bpa™.

Then the sum of p(z) and g(z) is

p(x) + q(x) = co + 1z + - + e’

where ¢; = a; + b; for each i. We define the product of p(z) and ¢(z) to be

p(l‘)q(l’) =G + 1T + -+ Cernxm—i-n’

where

C;, = Z akbi_k = CLobi -+ albi_l + -+ az’—lbl + CLibo.
k=0

for each i. Notice that in each case some of the coefficients may be zero.

Example 4.1.1.
Suppose that
p(x) = 3+ 0z + 02 + 22° + 0z"

and
q(z) =2+ 0z — 2% + 02° + 42"
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are polynomials in Z[x]. If the coefficient of some term in a polynomial is zero,

then we usually just omit that term. In this case, we would write
p(z) =3+22° and q(x) =2 — 2% +42™.
The sum of these two polynomials is
p(z) +q(z) =5 — 2% + 22° + 42",
The product,
p(2)q(x) = (3+22%)(2 — 2 + 42*) = 6 — 32 + 42° + 122* — 22° + 827,

can be calculated either by determining the c;’s in the definition or by simply mul-

tiplying polynomaials in the same way as we have always done.

Theorem 4.1.1.
Let A be a commutative ring with identity. Then Alx| is a commutative ring with

rdentity.

Proof 4.1.1.
Our first task is to show that Alx] is an abelian group under polynomial addition.
The zero polynomial, f(x) =0, is the additive identity. Given a polynomial p(z) =

Yo aixt, the inverse of p(x) is easily verified to be

n

—p(z) = Z(—ai)xi =— Z a;x’.

=0

Commutativity and associativity follow immediately from the definition of poly-
nomial addition and from the fact that addition in A is both commutative and

associative.

To show that polynomuial multiplication is associative, let

m n p
p(z) = Z a;x’,  q(r) = Z bix', r(r)= Z cix'.
i=0 i=0 i=0

Then

[p(z)q(z)]r(x) = [(Z aa:) (Z bm)] (Z cx)
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— mfp (Z <i akbjk> cz-j> !

=0 7=0 k=0

m-+n—+p A
= Z ( Z ajbkcl> x'

1=0 Jjt+k+l=i
m—+n+p 7 ]

= Q; bk Ci—j—k T
=0 7=0 k=0

- (55e) (5 05)7)

- (E) () ().

= p(a)[q(x)r(z)].

The commutativity and distribution properties of polynomial multiplication are

proved in a similar manner. We shall leave the proofs of these properties as an

exercise.

Proposition 4.1.1.
Let p(x) and q(z) be polynomials in Alz|, where A is an integral domain. Then
1. deg(p(z)q(x)) = deg(p(x)) + deg(q(z))

2. deg(p(x) + q(z)) < max(deg(p(z)), deg(q(z)))

Furthermore, Alx] is an integral domain.

Proof 4.1.2.

1. Suppose that we have two nonzero polynomials
p(x) = apa™ + - + a1x + ag
and
q(x) = bya" + -+ - 4+ bix + by

with a,, # 0 and b, # 0. The degrees of p and q are m and n, respectively.
The leading term of p(x)q(x) is apb,x™*™, which cannot be zero since A is

an integral domain; hence, the degree of p(x)q(x) is m+n, and p(z)q(x) # 0.
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Since p(x) # 0 and q(x) # 0 imply that p(x)q(z) # 0, we know that Alz]

must also be an integral domain.

2. Trivial.

Let U(A) denote the units (invertible elements) of A.

Proposition 4.1.2.
If A is an integral domain, then the units of A[X]| are exactly the constant poly-
nomials P = a where a € U(A).

Proof 4.1.3.
Let P be invertible in A[X]. There exists Q € A[X] such that PQ = 1. Thus,
deg(P)+ deg(Q) = 0 implies deg(P) = deg(Q) = 0. Hence, P and Q) are constant

tnvertible elements.

4.2 Polynomial Arithmetic

4.2.1 Associated Polynomials

Definition 4.2.1.
Two polynomials P and Q in A[X] are said to be associated if there exists a € U(A)
such that P = a(Q).

Example 4.2.1.
The set of polynomials associated with X? + 1 in Z[X] is

{(X?2+1,—(X?+1)}

since the only units in Z are 1 and —1.

Proposition 4.2.1.

1. The relation "being associated" is an equivalence relation on A[X].
2. If P and @ are associated and have the same leading coefficient, then P = Q).

3. If A is a field, then every polynomial P is associated with a unique unitary

polynomial.
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4.2.2 Division

Definition 4.2.2.
Let P,Q € A[X]. We say that P divides Q, denoted as P|Q, if there exists
R € A[X] such that QQ = PR.

Example 4.2.2.

1. The polynomial X — 1 divides X* — 1 in Z[X].
2. The polynomial X — 3 does not divide X* — 1 in Z| X].

Proposition 4.2.2.
Let P,Q, R, S € A[X].

~

. If P|Q and Q|R, then P|R.

NS

. If P|Q and P|R, then P|(Q + R).

Co

. If PlQ and Q # 0, then deg(P) < deg(Q).

E

. If P|Q and R|S, then PR|QS.

v

. If P|Q, then P™|Q™ for alln > 1.
Proposition 4.2.3.
Let P,Q,R,S € A[X].

1. If P|Q and Q|P, then P and Q are associated.

2. If P is associated with R and Q is associated with S, then P|Q) <= R]|S.

4.2.3 FEuclidean Division

Theorem 4.2.1. (Euclidean Division)

Let A, B € K[X] be two polynomials with coefficients in a field K such that B #
0. Then there exists a unique pair (Q, R) of K[X] such that A = BQ + R and
deg(R) < deg(B).

Example 4.2.3.
Let A=2*+ 2+ 1 and B=x+ 1. Then we have A = B(z* —x +2) — 1.
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Recall that a subset I of a ring A is an ideal if the following two conditions hold:

1. (I,+) is a subgroup of (A, +),
2. For every a € A, al C I. In other words, for alla € Aand x € I, ax € I.

Theorem 4.2.2.
The ring K[X] is principal (In other words, every ideal I C K[X] can be written
as I = (P(X)) for some P(X) € K[X]).

Proof 4.2.1.

Let I be an ideal of K[X] containing a nonzero polynomial. We want to show that
1 s principal, i.e., there exists a polynomial P such that I is exactly the set of
multiples of P. Let D = {deg(S) | S € I,S # 0}. This is a non-empty subset
of N, so it has a minimum n. Let P be a polynomial of degree n in I. Since I
s an ideal, all multiples of P are in I. Conversely, we want to show that every
element of I is a multiple of P. So let A € I. We know there exist (), R such that
A = PQ + R with deg(R) < n. Since —PQ € I, we have R=A— PQ € I. As
deg(R) < n, by the definition of n, we have R =0, i.e., A = PQ, and A is indeed
a multiple of P.

4.2.4 Irreducible Polynomials

Recall that the invertible polynomials in A[X] are the constant polynomials P =
a € U(A). Thus, since all non-zero elements in a field are invertible, the invertible

polynomials in K[X] are the non-zero constant polynomials.

Definition 4.2.3.
A polynomial P € K[X] is called irreducible if it is not invertible and if the equality
P = QR wmplies that either (Q or R is invertible.

We say that a polynomial P is reducible if it is not irreducible.

Example 4.2.4.

1. The polynomial P(X) = 3 is invertible in Q[X], so it is not irreducible.

2. The polynomial P(X) = X?+1 is irreducible if we consider it as an element
of R[X], but it is reducible if we consider it as an element of C[X]|, because
X2 4+1=(X—i)(X +1).
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The notion of irreducible polynomials depends on the field K.

Proposition 4.2.4.

1. Reducible polynomials in K[X| have degree greater than or equal to 2.

2. All polynomials of degree 1 are irreducible.

4.2.5 Greatest Common Divisor

Let P, ..., P, € K[X]. Since K[X] is principal, the ideal

< P,.. P, >:{P1A1+P2A2+"'+an4n|A1,AQ,...,An€K[X]}.

is generated by a unique unit polynomial P. This polynomial is called the greatest

common divisor gcd of P; and is denoted
P =gcd(Py, ..., By).

Proposition 4.2.5. Properties of gcd
Let P,Q € K[X]. Then
1. ged(P, Q) is a common divisor of P and Q.
2. If D is another common divisor of P and Q, then D divides ged(P, Q).

3. There exist polynomials (U, V) € K[X]? such that

PU + QV = ged(P, Q).
Definition 4.2.4.

Let P,Q € K[X]. We say that P and Q are coprime if ged(P, Q) = 1.

In other words, if ged(P, Q) = 1, then only non-zero constants divide both P and
Q.
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4.2.6 Factorization

Theorem 4.2.3.
Let P € K[X] be a non-zero polynomial. Then P decomposes uniquely up to the

order of factors as:
P =aPM P . P

where P; are distinct, unit, irreducible polynomials in K[X] and o € K* is the
leading coefficient of P.

Example 4.2.5.
Consider the polynomial P = x® + 1. Then P emists in both R[X] and C[X].

Howewver, care must be taken as its factorization differs in these two rings:

1. P factors as (X —1i) - (X +1) in C[X].
2. P is irreducible in R[X].

Proposition 4.2.6.

Let P and @ be two non-zero polynomials. Let P = aP[" Py?...PY and QQ =
bPlﬁ1 P2'32...Pf" be their decompositions into irreducible factors where oy, 8; > 0 for
alli € {1,...,n}. Then

P divides Q) & a; < forall1 <j<n

4.3 Polynomial Functions

Let P € K[X]. We denote by fp the polynomial function associated with P,

defined as:
fp K— K

x — P(x).

Definition 4.3.1.
Let P € K[X]. We say that x € K is a root of P if fp(z) =0 (or P(z) =0).

Proposition 4.3.1.
Let P € K[X] and o € K. Then « is a root of P if and only if the polynomial
(x — ) divides P.



Chapter 4. Rings of Polynomuals 113

Definition 4.3.2.
Let P € K[X]| and let « be a root of P. We say that o has multiplicity k if and

only if (x — a)* divides P and (x — a)**! does not divide P.

In other words, « is a root of P of multiplicity & if and only if

P=(z—a)*Q and Q(a) # 0.

Example 4.3.1.

To determine the multiplicity of a root, we can perform successive Euclidean di-
visions. Let P = 2% — 32% + 4. It can be verified easily that 2 is a root of P.
Furthermore, we find P(x) = (z — 2)?Q(x) with Q(z) = x + 1 and Q(2) # 0.

Theorem 4.3.1.
Let P € K[X] and ay, ..., a, be pairwise distinct roots of multiplicative ky, ..., k,,
respectively. Then, there exists QQ € K[X] such that

P=(z—a)"(@—a)”. (z—0a)"Q

and Q(c;) # 0 for all i. In particular, P has a degree of at least ki + ... + k..
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