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3.6 Exercise Solutions

Solution 3.1.

1. Associativity:
To check if % is associative, we verify if (x xy)*z = x * (y * z) for all

Y,z € R.

Let’s calculate:

Txy =14y — 1Y,
(x*xy)sxz=(x4+y—ay)*xz=0+y+z—2ay — 22— Yz + TYZ.

Now calculate:

y*z=y+z—yz,
zx(yx2)=xx(y+z—yz)=c+y+z—yz)—z(y+ 2z —yz).

Simplifying gives:
rT+y+z—xy—x2— Yz + 1Yz,

which equals (x *y) * z. Hence, x is associative.

2. Commutativity:

To check if * is commutative, we verify if v xy =y *xx for all z,y € R.

Calculating y * x gives:
Y*Tr=yYy+r—yr=r+y—Ty =2T*xy.

Therefore, x is commutative.
3. Neutral Element:
We seek a real number e such that x xe = exx = x for all x € R.
Setting x x e = & gives:
r+e—ze=uwx.
Simplifying gives e — xe =0, so e(1 —x) = 0. For all x # 1, we have e = 0.

Therefore, the neutral element e is 0.
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4. Inverse Element:

We look for a real number y such that x+xy = y*xx = e, where e is the neutral

element.

Solving x =y = 0 gives:

r+y—xy=0.
Rearranging gives:
y—ry = —x,
y(l—z) = —=x.
So,
=
YT

Hence, the inverse of x under * 1s =, provided x # 1.
—T

5. Formula for n-th Power:

We consider the operation x defined on R by:
rxy=x+y—uxy, foralxyeck.
We aim to derive a formula for ™", defined as:

T =xxxT k- x1.
ﬁ—/

n times
Special cases
o forn=1:
1‘*1 =
o forn=2:
2 =wxr=x+1—2>=201— 2>

o forn=23:

*3

T — I*Q

xx = (20 — 2°) * 7.

By computation, we find:

(22 —2®)xx = (20 — %) + = — (22 — )z = 32 — 3% + 2>
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General formula

From the special cases, we observe that the n-th power can be written as:

o == ()er () = ot (M)

where the coefficients are the binomial coefficients.
Proof by induction

1

e Base case: For n =1, we have x*" = x, which matches the formula.

e Inductive step: Assume that:

By definition:

n+1)

2 =" xrx ="+ -2 2.

Substituting the formula for x* and simplifying, we recover exactly the

terms corresponding to:

This completes the proof by induction.

Final formula

The n-th power for the operation x is given by:

k=1

where (Z) 1s the binomial coefficient.

Solution 3.2.

We are given the binary operation x on R defined by

a*b=In(e" + ).



Chapter 3. Algebraic Structures 88

We will now examine the properties of this operation.

1. Commutativity To check if x is commutative, we need to verify if
axb=0bxa forall a,béeR.
Using the definition of the operation:
axb=1In(e"+¢e) and bxa=In(e’ +e?).
Since e® + e® = e’ + e, we have:
axb=>bxa.

Thus, the operation x is commutative.

2. Associativity To check if x is associative, we need to verify if
(axb)xc=ax(bxc) forall a,bceR.

We calculate both sides using the definition of *:

- Left-hand side:

(axb)se=In(e"+e) x e =In (" 4 e) =In((e" + ) + <)

- Right-hand side:

ax*(bxc)=axIn(e’+¢e%) =In <e“ + eln(€b+ec)> =In (e + (" + ¢°))

Since the two expressions are equal, the operation is assoctative.

3. Neutral Element To find a neutral element e € R, we need to solve the
equation

axe=a forall aeR.

Using the definition of *:

axe=In(e" +e°) = a.
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This simplifies to:

Since €€ = 0 has no real solution, there is no neutral element.

1

4. Regular Elements An element x is reqular if there exists an inverse =" such

that
rxz l=e.
Since there is no neutral element, there are no regular elements.

Conclusion - The operation * is commutative. - The operation * is associa-

tive. - There is no neutral element. - There are no regular elements.

Solution 3.3.

Solution We are given the operation x defined on R as:

Vo,y € RT, zxy =22+ 12

We will analyze the properties step by step.

1. Commutativity To check if the operation x is commutative, compute:
vy = JETR yrr— JE T
Since addition is commutative, x* + y* = y* + 22, it follows that:
TRy =1Y*x.

Thus, the operation * is commutative.

2. Associativity To verify associativity, we need to check if:
(xxy)*xz=x*x(y*2).

Compute (xxy) * z:

rxy=+12+1y% (xxy)*z= \/(\/:z:2+y2)2+z2: Vv +y?+ 22

Compute x x (y * z):

yrxz=\y2+22, xx(yxz)= \/x2+(\/y2+22)2: Va2 +y?+ 22
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Since both expressions are equal:
(xxy)*xz=x*(yx*2).

Thus, the operation % is associative.

3. Existence of a Neutral Element A neutral element e € RT satisfies:
rxe=x, VreR".

Using the definition of x:

THxe=Vr?4+e?=n.

Squaring both sides:

The neutral element is therefore e = 0.

4. FExistence of Inverse Elements Let us suppose that a symmetric element
exists. However, x x &' = /a2 + 22 = 0 then 2% + 2> = 0 then then v = 2’ = 0.

So if © > 0, there is no symmetric element.

Conclusion

o The operation * is commutative.

e The operation x is assoctative.

e The neutral element is therefore e = 0.
o Ifx >0, there is no symmetric element.

Solution 3.4.
1. Proving that (R* x R, %) is a Group: Closure: Given two elements (x,y)

and (2',y') in R* x R, the operation x is defined as:

(z,y) * (2',y) = (z2', 2y’ +y).

Since x,2' € R* and y,y" € R, it follows that x2' € R* and zy +y € R, so the

result 1s in R* x R. Therefore, the operation is closed.
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Associativity: We need to prove that:
(2, y) * (@', 9)) > (2", ") = (z,y) = (") * (2", y")).
First, compute the left-hand side:
(z,y) x (2", y) = (z2’, 2y + ),

and then:

!0

(za’, oy’ +y) (2", y") = (x2'2”, (xy" + y)y" + (zy + ).

Now, compute the right-hand side:

/.1

(@', y) x (2", y") = (2", 2"y + o),

and then:
(.T7 y) * (xlx//7$/y// +y/) — (m(x/aj//)7x<x/y// +y/) _|_y)

Since both sides are equal, the operation x is associative.

Neutral Element: We look for a neutral element (e1,es) such that:

(z,y) * (e1,e2) = (z,y) and (er,e2) x (7,y) = (z,9).

From the equation:

(z,y) x (e1,e2) = (zey, xea + y),

we must have e; = 1 and eg = 0.
Thus, the neutral element is (1,0).

Inverses: We look for the inverse of (x,y) such that:

(z,y) * («',¢) = (1,0).

From the equation:

(z2’, 2y +y) = (1,0),

' =1 and xzy +y=0.
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Therefore, the inverse of (x,y) is (l —ﬂ).

x’ T

2. Is the operation x Commutative?

To check if the operation is commutative, we need to verify if:
(@) * (2", y) = (", y) % (2,y).

We have:
(@, y) * (2", y) = (x2’, 2y’ + ),

and
(@) * (z,y) = ("2, 2y + ).

For the operation to be commutative, we must have:
xd' =2’z and xy +y=2y+vy.

The first condition xx' = x'x holds because multiplication in R* is commutative.
However, the second condition xy' +y = 2’y + v is not always true, as the terms

wwvolve different variables. Thus, the operation is not commutative.
3. Simplifying (z,y)":

To compute (x,y)™ using the operation *, we observe the following pattern:
(,9)" = (" nzy +y(1+ 24+ (n—1))).

The sum 1 +2+---4 (n—1) is the sum of the first n — 1 integers, which is given

by:
(n—1)n
—

Thus, we have:

(n—1)n

5 Y)-

(z,y)" = (2", nzy +
Summary:

o (R* X R, %) is a group.
e The operation is not commutative.

o (z,y)" = (2", nzy + 252y,
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Solution 3.5.
We define on R, the composition law o by:

roy=xz+y—2, Vr,yecR.

1. Show that (R, 0) is an abelian group.

To show that (R,0) is an abelian group, we need to verify the following

properties:

e Closure: For all x,y € R, we need to show that r oy € R.

roy=gc+y—2,
which 1s clearly in R, so the operation is closed.

e Associativity: We need to show that for all x,y,z € R,

(xoy)oz==xo0(yoz).

We compute both sides:
- Left-hand side:

(roy)oz=(r+y—2)oz=(x+y—2)+2—-2=x+y+z—4.
- Right-hand side:
rzo(yoz)=zxzo(y+z—-2)=c+(y+z—-2)—2=x+y+z—4.

Since both sides are equal, the operation is associative.

e Neutral element: We need to find the neutral element e € R such
that for all x € R,

roe=x and eox =z.
Using the operation:
roe=x+e—2=x = e=2.

Therefore, the neutral element is e = 2.
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o Inverses: We need to find the inverse of each v € R, i.e., an element
y € R such that:
roy=2.

Using the operation:
roy=ax+y—2=2 = y=4-=x

Therefore, the inverse of x is 4 — x.

o Commutativity: We need to show that x oy = yox. Since
roy=x+y—2 and yoxr=y—+x—2,
and since addition is commutative, x +y =y +x, Sox oy =y ox.

Since we have shown closure, associativity, the existence of an identity el-

ement, inverses, and commutativity, we conclude that (R, o) is an abelian
group.
2. Letn € N. We define 2(1) = x and x(n+ 1) = z(n) o x.

(a) Calculate ©(2),x(3),x(4):
We compute x(2),x(3),x(4) based on the recursive definition of x(n):
-x(2) =z(l)ox =zor=ax+x—-2=20—-2. -2(3) =2(2)ox =
(2rx—2)ox = (2x—2)+x—2=3x—4. -2(4) =2(3)ox = (Bx—4)ox =
(Bx —4)+x—2=4x—6.

Thus, we have:
r(2)=2x—2, z(3)=3rx-4, x(4) =4z —6.

(b) Show that for all n € N, z(n) =nx —2(n —1):
We will prove this by induction on n.

- Base case (n=1):
z(l)=v=1r-2(1-1) ==z

So the base case holds.

- Inductive step: Assume the formula holds for some n, i.e., assume:

z(n) =nx —2(n —1).



Chapter 3. Algebraic Structures 95

We need to show that:
z(n+1)=(n+1)z —2n.
From the definition of x(n+ 1):
zr(n+1) = z(n)ox = (nx—2(n—1))ox = (nx—2(n—1))+z—2 = (n+1)z—2n.

Thus, the formula holds for n 4+ 1, completing the induction.

Therefore, for all n € N, we have:
xz(n) =nx —2(n—1).

3. Let A={x € R|x is even}. Show that (A,0) is a subgroup of (R, o).

We need to verify that (A, o) is a subgroup of (R,0). To do this, we must
check the following properties:

e Closure: Let x,y € A. Since x and y are even, we have x = 2m and

y = 2n for some m,n € Z. Now, check if toy € A:
roy=x+y—2=2m+2n—2=2(m+n—1).

Since m+n —1 is an integer, x oy is even. Thus, A is closed under o.

e Identity element: The identity element of (R,0) is 2. We check if
2 € A. Since 2 is even, the identity element belongs to A.

o Inverses: Let x € A. Since x is even, x = 2m for some m € Z. The

inverse of x in (R,0) is 4 — x. We need to check if the inverse is also
n A:
4—x=4-2m=2(2—m),
which is even. Therefore, the inverse of x is also in A.
o Commutativity: Since (R, o) is commutative, (A, o) inherits commu-

tativity.

Since (A, o) is closed, contains the identity element, has inverses for all its

elements, and is commutative, it is a subgroup of (R, o).

Solution 3.6.
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1.

2. To show that Z(G) is a subgroup of G, we need to verify the fol-

lowing properties:

e Closure: Let x,z € Z(G). We need to show that x - z € Z(G), i.e.,
(x-z)-y=y-(x-z2) foralyeq.
Since x € Z(G) and z € Z(G), we have:

r-y=y-xr and z-y=y-z foralyé€eQG.
Now, for x -z, we compute:

(- 2) y=z-(z-y)=a-(y-2)=(v-y) 2= 2)- 2=y (v 2),

which shows that x - z € Z(G). Thus, Z(G) is closed under the group

operation.

e Identity element: The identity element e € G satisfiese-y =y-e =y
for ally € G. Since the identity element commutes with every element
of G, we have e € Z(QG).

o Inverses: Let x € Z(G). We need to show that the inverse of x,
denoted z7', is also in Z(G). Since x € Z(QG), we know that x-y =y -z
forally € G.

To show that x=' € Z(G), we compute:

-1

s ty=(@a2Hy=z-(2ty)=(xy)r =yt foralyecd.

Thus, ™' € Z(G), and every element of Z(G) has an inverse in Z(G).
Therefore, Z(G) is a subgroup of G.
3. Show that G is commutative if and only if Z(G) = G.

o If G is commutative, then Z(G) =G:
If G is commutative, then for all x,y € G, we have x -y =y - x. Thus,

every element of G commutes with every other element of G, which

means that Z(G) = G.
o If Z(G) =G, then G is commutative:
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If Z(G) = G, then every element x € G commutes with every element
y € G, ie, x-y=1y-x for all x,y € G. This means that G 1is

commutative.

Therefore, G is commutative if and only if Z(G) = G.

Solution 3.7.

1. Show that f, is an endomorphism of the group (G,-).

To show that f, is an endomorphism of G, we need to check that f, preserves

the group operation. That is, we need to verify that for all x,y € G,
fa(x : Z/) = fa(m) ) fa(y>'

Compute both sides:
folz-y)=a-(z-y)-a".

On the other hand:
fa(@) - faly) = (a-z-a™") (a-y-a™).

Using the associativity of the group operation:
(a-z-aV-(a-y-at)=a-7-(a

Hence, we have:
fa(x ’ y) = fa(‘r) ) fa(y)'

Therefore, f, is an endomorphism of G.

2. Verify that for all a,b € G, f,o f, = fop-

We want to show that f, o foy = fa, i.e., for all x € G,
fa(fo(2)) = fas(2).
First, compute f,(fy(z)):

fb(l‘) =b-x 'b_la
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SO

falfo(@)=a-(b-z-b"")-a'=(a-b)-z-(a-b)"".

Now, compute f,p(x):

far(z) = (a-b) -z (a-b)~".
Therefore, we have:
fa(fo(2)) = fas().
ThUS, fa o fb = fa-b-

3. Show that f, is bijective and determine its inverse function.

To show that f, is bijective, we need to prove that it is both injective and

surjective.

o Injectivity: To show that f, is injective, we need to prove that if

fa(x) = faly), then © =y. Suppose:

fa@) = fuly) = ax-a”=a-y-al,

Multiply both sides by a=' on the left and a on the right:
at(a-zv-ata=a'(a-y-al)-a = z=uy.

Hence, f, is injective.

e Surjectivity: To show that f, is surjective, we need to prove that for
every z € G, there exists an v € G such that f,(x) = z. We want to
find x such that:

Multiply both sides by a=! on the left and a on the right:

al(a-z-aNa=at2za = z=a'2z2-a

Therefore, for any z € G, we can find x = a™ - 2-a such that f,(z) = 2.

Hence, f, is surjective.

Since f, is both injective and surjective, it is bijective.

To find the inverse of f,, we need to find a function f,-1 such that:

fa_1<fa(x>) =z and fa(fa—l(x)) =x.
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We compute:
foi(fo(@) = fai(a-z-a N =at (a-2-a1) a=n.
Therefore, the inverse of f, is f,—1, and we have:

fa_l = faﬁl-

Solution 3.8.

1. Show that (A, *,0) is a ring. To show that (A, o) is a ring, we need to
verify the following properties:

® X 1S associative.
e < 1S associative.
e X 15 commutative.

o 1s distributive over x.

0 s the identity element for x.

1 1s the identity element for <.

1. * is associative: We need to show that (axb) *c = a* (bxc) for all

a,b,c e A.
(axb)xc=(a+b+1)xc=(a+b+1)+c+1=a+b+c+2.

ax(bxc)=ax(b+c+1)=a+(b+c+1)+1=a+b+c+2.

Since both sides are equal, * is associative.

2. ¢ is associative: We need to show that (aob)oc=ao (boc) for all

a,b,c € A.
(aob)oc=(a-b+a+boc=(a-b+a+b)-c+(a-b+a+b)+c
Simplifying this:

=a-b-ct+a-c+b-c+a+b+ec.
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Now compute a o (boc):
ao(boc)=ao(b-c+b+c)=a-(b-c+b+c)+a+(b-c+b+c).
Simplifying this:
=a-b-ct+a-b+a-c+a+b-c+b+c
Re-arranging terms:
=a-b-c+a-c+b-c+a+b+ec.

Hence, both sides are equal, so ¢ is associative.

3. x is commutative: We need to show that axb=>bxa for all a,b € A.
axb=a+b+1 and bxa=b+a+ 1.

Since addition is commutative in A, we have axb = bxa, so x is commutative.

4. Distributivity of o over x: We need to show that ao(bxc) = (aob)x(aoc)
for all a,b,c € A.

ao(bxc)=ao(b+c+1l)=a-(b+c+1)+a+(b+c+1).
Simplifying:
=a-bta-ct+tat+a+bt+ct+l=a-bt+a-c+2a+b+c+1
Now, compute (aob)x(aoc):
(aob)=a-b+a+b, (aoc)=a-c+a+ec.

(aob)*(avc) = (a-b+a+b)x(a-c+a+c)=(a-b+a+b)+(a-c+a+c)+1.

Simplifying:
=a-b+a-c+at+at+bt+c+l=a-b+a-c+2a+b+c+1.

Hence, ao (bxc) = (aob)x(aoc), soo is distributive over *.
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5. Identity element for x: We need to show that 0 is the identity element

for x.
ax0=a+0+1=a+1 and O0xa=0+a+1=a+1.

So, 0 is the identity element for .

6. Identity element for o: We need to show that 1 is the identity element

for <.

acl = a-1+a+1 = a+a+1 = 2a+1 and 1oa = l-a+1+a = a+1+a = 2a+1.
Thus, 1 is the identity element for <.

Therefore, (A, *,9) is a ring.

2. Show that the map [ : (A, +,-) = (A, x,¢) given by f(a) =a—1 is an

tsomorphism of rings.

Solution: We need to show that f is a ring isomorphism. This requires

that:

e fis a homomorphism, i.e., it preserves both addition and multiplication.

e f is bijective.

1. Homomorphism for x: We need to show that f(axb) = f(a)* f(b).

We compute:
flaxb)=fla+b+1)=(a+b+1)—1=a-+b,
and
fl@xf)=(a—D)x(b-1)=(a—1)+(b-1)+1=a+b—1.

Since both sides are equal, f preserves .

2. Homomorphism for o: We need to show that f(a o b) = f(a) o f(b).

We compute:
flaob)=f(a-b+a+b)=a-b+a+b—1,
and

fla)of(h)=(a—1)o(b-1)=(a—1)-(b—1)+(a—1)+ (b—1).
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Ezxpanding this:
=a-b—a—b+14+a—-1+b—-1=a-b+a+b—1.

Hence, f preserves <.

3. Bijectivity: The map f(a) = a — 1 is clearly bijective because it is a

linear map with an inverse f~*(a) = a + 1.

Therefore, f is an isomorphism of rings.

Solution 3.9.
Let Z[V?2] = {a + b2 | a,b € Z}.

1. Show that (Z[\/2],+, x) is a ring.

2. Let N(a +bV/2) = a®> — 20*. Show that for all z,y € Z[v2], we have
N(zy) = N(z)N(y)-

3. Deduce that the invertible elements of Z[/2] are those of the form a + by/2
with a® — 20* = £1.

Solution 3.10.

1. It is sufficient to prove that Z[\/2] is a subring of (R, +, x). But Z[\/2] is

stable under the addition operation:
(a+0V2) + (d +VV2) = (a+d) + (b+V)V2.
It is also stable under multiplication:
(a4 bV2) x (a' +V'V2) = (ad’ + 200') + (abl + a'b)V/2.
It 1s stable under negation:
—(a+bV2) = —a + (—b)V2.

Moreover, 1 € Z[/2], which completes the proof that Z[\/2] is a subring of
R.
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2. Letx = a+ b2 and y = o + V2. Using the formula for the product

obtained in the previous question, we have:
N(zy) = (ad’ +200")* — 2(ab' + a'b)* = (aa’)* — 2(ab')? — 2(a’b)* + 4(bb')>.
On the other hand,

N(z) x N(y) = (a® — 2b*)(a”® — 2b™) = (aad')? — 2(ab')* — 2(a'b)* 4 4(b')*.

3. Now, suppose x = a + b\/2 is invertible with inverse y. Then, N(zy) =
N(1) = 1, and therefore N(x)N(y) = 1. Since N(x) and N(y) are both
integers, we must have N(z) = £1. Conversely, if N(x) = £1, then using

the conjugate:

L a_bﬁ:i(a—b\/ﬁ),

a+byv2 a®— 20
which shows that a + b\/2 is invertible with inverse &(a — bv/2).

Solution 3.11.
We will begin by proving that Q(i) is a subring of C. To do this, we observe that:

1€ Q(i)

If z=a+bi and 2/ = a+ bi' € Q(i), then:
z—2 =(a—d)+ilb-V) e Qi)
and
22" = (a+bi)(d +b') = (ad’ —bV') +i(ab + a'b) € Q).
Neat, let z = a+ bi € Qi) with z # 0. Then:

1 a—bi a . —=b

- = = €
z a4+ b2 a2+b2+la2—|—b2

Q).

Thus, 1 is in Q(i), and therefore every non-zero element of Q(i) has an inverse
in Q(i). This completes the proof that Q(i) is a field.
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