3.5 Exercises

Exercice 3.1.

Consider on \mathbb{R} the binary operation * defined by x*y = x+y-xy. Is this operation associative, commutative? Does it have a neutral element? Does a real number xhave an inverse under this operation? Provide a formula for the n-th power of an element x under this operation.

Exercice 3.2.

We define an internal composition law * on \mathbb{R} by

$$\forall (a,b) \in \mathbb{R}^2, \quad a * b = \ln(e^a + e^b).$$

What are its properties? Does it have a neutral element? Are there regular elements?

Exercice 3.3.

We are given an internal composition law defined by:

$$\forall x, y \in \mathbb{R}^+, x \star y = \sqrt{x^2 + y^2}$$

Show that this operation is commutative, associative, and that there exists a neutral element. Show that no element has an inverse for this operation.

Exercice 3.4.

We define, for (x, y) and (x', y') in $\mathbb{R}^* \times \mathbb{R}$, the operation \star by:

$$(x, y) \star (x', y') = (xx', xy' + y).$$

Prove that $(\mathbb{R}^* \times \mathbb{R}, \star)$ is a group. Is it commutative? Simplify $(x, y)^n$ for all $(x, y) \in \mathbb{R}^* \times \mathbb{R}$ and for all $n \in \mathbb{N}^*$.

Exercice 3.5.

We define on \mathbb{R} , the composition law \circ by:

$$x \circ y = x + y - 2, \quad \forall x, y \in \mathbb{R}.$$

- 1. Show that (\mathbb{R}, \circ) is an abelian group.
- 2. Let $n \in \mathbb{N}$. We define x(1) = x and $x(n+1) = x(n) \circ x$.
 - (a) Calculate x(2), x(3), and x(4).

- (b) Show that for all $n \in \mathbb{N}$: x(n) = nx 2(n-1).
- 3. Let $A = \{x \in \mathbb{R} \mid x \text{ is even}\}$. Show that (A, \circ) is a subgroup of (\mathbb{R}, \circ) .

Exercice 3.6.

Exercise 3: Let (G, \cdot) be a group, and denote by $Z(G) = \{x \in G \mid \forall y \in G, xy = yx\}$ the center of G.

- 1. Show that Z(G) is a subgroup of G.
- 2. Show that G is commutative if and only if Z(G) = G.

Exercice 3.7.

Let (G, \cdot) be a non-commutative group with neutral element e. For $a \in G$, define a function $f_a : G \to G$ by

$$f_a(x) = a \cdot x \cdot a^{-1}$$

- 1. Show that f_a is an endomorphism of the group (G, \cdot) .
- 2. Verify that for all $a, b \in G$, $f_a \circ f_b = f_{a \cdot b}$.
- 3. Show that f_a is bijective and determine its inverse function.

Exercice 3.8.

Let $(A, +, \cdot)$ be a ring with identities 0 and 1 for addition and multiplication respectively. We define the following operations \star and \diamond on A:

$$\forall a, b \in A, \quad a \star b = a + b + 1$$

$$\forall a, b \in A, \quad a \diamond b = a \cdot b + a + b$$

- 1. Show that (A, \star, \diamond) is a ring.
- 2. Show that the map $f : (A, +, \cdot) \to (A, \star, \diamond)$ given by f(a) = a 1 is an isomorphism of rings.

Exercice 3.9.

Show that $\mathbb{Q}(i) = \{a + bi \mid a, b \in \mathbb{Q}\}$ is a field.