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2.5 Exercise Solutions

Solution 2.1.

Union of A and B:
AUB=1{1,2,3,4,5,6,7}

Intersection of B and C':
BnNC ={4,6}

Set difference A — B:
A—-B=1{1,2}

Symmetric difference of A and C':

AAC = {1,3,5,8,10}

Solution 2.2.

1. a € E: True. Since E = {a,b,c}, a is an element of E.

2. a C E: False. a is not a subset of E; {a} is a subset of E.
3. {a} C E: True. {a} is a subset of E because a € E.

4. 0 € E: False. O (empty set) is not an element of E.

5. 0 C E: True. The empty set () is a subset of every set, including E.

6. {0} C E: False. {0} is not a subset of E because ) ¢ E.

Solution 2.3.

1. A\ B = AN B¢ By definition:
A\ B={x € A|z ¢ B},
and on the other hand:

ANB‘={zecAlzeB}={zxcA|z ¢ B}.
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Thus:
A\ B=AnNB".

2. AN(BUC)=(ANB)U(ANC)

Using the distributive property of intersection over union:

AN(BUC)=(ANB)U(ANC).

3. AU(BNC)=(AUB)N(AUCQ)

Using the distributive property of union over intersection:
AU(BNC)=(AUB)N(AUCQC).

This can also be verified using element-based reasoning: If v € AU (BNC),
thenx € Aorx € BNC. Ifxr € BNC, thenx € Bandxz € C, sox € AUB
and x € AUC.

Conversely, if t € (AUB)N(AUC), thenx € AUB and x € AUC. This
implies x € A, orz € Bandx € C, sox € AU(BNC(C).

J. AAB=(AUB)\ (AN B)

By the definition of symmetric difference:
AAB =(A\ B)U(B\ A).
Using part (1):
A\B=ANDB° and B\ A=BnNA"

Thus:
AAB = (AN B°)U (BN AY.

On the other hand:

(AUB)\ (ANB)=(AUB)N (AN B)-.
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Since (AN B)¢ = A°U B€, we have:
(AUB)\ (AN B)=(AUB)N(A°U B°).
Using the distributive property:
(AUB)N(A°UB°) =[(AUB)N AU [(AU B) N B°.
Simplifying each term:
(AUB)NA°=(ANA°)U(BNA®) =BnNA"

(AUB)NB® = (ANB°)U(BNB°) = AN B°.

Thus:
(AUB)\(ANB) = (AN B°)U (BN A°).

Therefore:
AAB =(AUB)\ (AN B).

Solution 2.4.
The Power Set P(E)

The power set P(E) of a set E is the set of all subsets of E, including the empty
set and E itself. For E ={a,b,c,d}, the power set P(E) is:

P(E) = {0,{a},{b}.{c}, {d}.{a.b},{a,c} {a, d}, {b,c}, {b,d}, {c,d},

{a,b,c},{a,b,d},{a,c,d},{b,c,d}, E}.

In total, P(E) contains 2™ subsets, where n = 4 is the number of elements in E.

Thus, |P(E)| = 2* = 16.
Example of a Partition of F

A partition of E is a collection of non-empty, pairwise disjoint subsets of E whose

union equals E. An example of a partition of E is:

Pr = {{a, b}, {c}, {d}}.

Verify:
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e Fach subset is non-empty.

o The subsets are pairwise disjoint:
{a,b} N {c} =0, {a,b}n{d} =0, {c}n{d} =0,
e The union of all subsets equals E':

{a,b} U{c} U{d} = {a,b,c,d} = E.

Thus, Py = {{a,b},{c},{d}} is a valid partition of E.

Solution 2.5.

1. Images and Pre-images under f(z) = sin(x):

(a) The image of R under f(x) = sin(z) is:

f(R) = [=1,1],

because the sine function oscillates between —1 and 1 for all real x.

(b) The image of [0,2n] under f(z) = sin(x) is:

f([0,27]) = [-1,1],

because sin(x) completes one full cycle in the interval [0, 27].

(c) The image of [0,Z] under f(x) = sin(z) is:

2
™

£(00.5)) = 0.1,

because the sine function is strictly increasing from 0 to 1 in this inter-

val.

(d) The inverse image of [0,1] under f(x) = sin(x) is:

FH0,1]) = | ] [2km, 2k + 7],

kEZ

as sine is periodic with period 2.
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(e) The inverse image of [3,4] under f(z) = sin(x) is:

f_l([374]) = @,

because sin(zx) ¢ [3,4] for any x € R.

(f) The inverse image of [1,2] under f(x) = sin(z) is:

F2) =7 = U {5 2k

because sin(x) = 1 occurs only at x = § + 2kn for k € Z, and sin(z) ¢
(1,2].

2. Comparison of f(A\ B) and f(A)\ f(B):
Let f(z) =2*+1, A=[-3,2], and B = [0,4]:

(a) The set A\ B =[-3,0), as B = [0,4] removes [0,4] from A.
(b) The image of A\ B under f(x):

f(AN B) = f([-3,0)) = (1,10],

because f(x) = x? + 1 is increasing on [0,00) and symmetric about

z = 0.

(¢c) The image of A under f(z):
f(A) = f([=3,2]) = [1,10],
and the image of B under f(z):
f(B) = f([0,4]) = [1,17].
(d) The set f(A)\ f(B) is:
AN f(B) = [1,10]\ [1,17] = 0.

Comparing:
FANB) =[1,10),  f(A)\ f(B) =0.
Thus, f(A\ B) # f(A)\ f(B).

3. Condition for f(A\ B)= f(A)\ f(B):
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For f(A\ B) = f(A)\ f(B) to hold, the function f must be **injective**
(one-to-one). Injectivity ensures that elements in A\ B map uniquely to

f(A\ B), without overlap from elements in B.

Solution 2.6.

1. E=7 and xRy < |z| = |y|:

Reflexive: Yes, since |x| = |z| for all x € Z.

o Symmetric: Yes, since |x| = |y| = |y| = |z|.

e Antisymmetric: No, because |x| = |y| does not imply © = y (e.g.,
r=3,y=-3).

e Transitive: Yes, since |x| = |y| and |y| = |z| imply |z| = |z|.

Type: This is an equivalence relation, not an order.

2. E=R\ {0} and 2Ry < zy > 0:

Reflexive: Yes, since x-x >0 for all x # 0.

Symmetric: Yes, since xy >0 — yx > 0.

Antisymmetric: No, because xy > 0 does not imply © = y (e.g.,
r=1,y=2).

Transitive: Yes, since xy > 0 and yz > 0 imply zz > 0.

Type: This is an equivalence relation, not an order.

3. E=7 and xRy & x — y is even:

Reflexive: Yes, since x — x = 0, which is even.

Symmetric: Yes, since x —y even implies y — x is even.

Antisymmetric: No, because x — y even does not imply x =y (e.g.,
r=2,y=4).

Transitive: Yes, since x —y even and y — z even imply x — z is even.

Type: This is an equivalence relation, not an order.
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Summary

e R, Ry, and R3 are all equivalence relations.

e None of them is an order because they fail antisymmetry.

Solution

1. £ =

3. F =

2.7.

R and xRy < v = —y:

Reflexive: No, since x = —x only holds for x = 0, so it is not reflezive.
Symmetric: Yes, since x = —y — y = —x.

Antisymmetric: No, because v = —y and y = —x do not imply x =y
(e.g, x=1y=—1).

Transitive: No, because x = —y and y = —z imply v = —(—2) = z,

which contradicts the original definition unless x =0 or z = 0.
Type: This is not an equivalence relation because it is not reflexive,
and it 1s not an order because it is not antisymmetric.

R and xRy < cos?(x) + sin*(y) = 1:

Reflexive: Yes, since cos®(z) +sin*(z) = 1 for all x € R.

Symmetric: Yes, since cos’*(z) +sin®*(y) = 1 = cos?(y) + sin®(z) =
1.

Antisymmetric: No, because cos?(x) + sin®(y) = 1 and cos®(y) +

sin?(z) = 1 do not imply x = y.

Transitive: Yes, since cos®(z) +sin?(y) = 1 and cos®(y) + sin?(z) = 1

imply cos?(z) + sin®(z) = 1.

Type: This is an equivalence relation but not an order.
N and Ry < 3p,q > 1 such that y = px? (where p,q € 7):

Reflexive: Yes, since x = px? holds for p=1,q =1, implying xRx.
Symmetric: No, since y = px? does not imply v = py?.
Antisymmetric: Yes, because if y = pzx? and x = p'y? , then z = y.
Transitive: Yes, since if y = px? and z = p'y? , then z = (pp')z97 .

Type: This is a partial order, not an equivalence relation.
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Solution 2.8.

1. Relation ~1: x ~1 y if and only if x + y is even.
Reflexive: Yes, because x + x = 2z is always even for any x € 7.

Symmetric: Yes, because if v+ 1y is even, then y+x = x +y, which is also

even.

Transitive: Yes, because if x + vy is even and y + z is even, then (x +y) +

(y+2) =+ 2y + z is even, implying that x + z is even.

Equivalence Classes: The equivalence classes are:

0={x€Z|xiseveny, 1={xecZ|xisodd.

2. Relation ~q: x ~o y if and only if x and y have the same remainder when
divided by 5.

Reflexive: Yes, because x mod 5 =x mod 5 for any x € Z.

Symmetric: Yes, because if x mod 5 = y mod 5, then y mod 5 = x
mod 5.

Transitive: Yes, because if v mod 5 =y mod 5 andy mod 5 =2z mod 5,

then + mod 5 = z mod 5.

Equivalence Classes: The equivalence classes are:
0={2€Z|rx=0 (mod5)}, 1={rcZ|zx=1 (mod?5)},

29={r€Z|r=2 (modb5)},3={zr€Z|r=3 (mod5)},

b={xecZ|r=4 (mod5)}.

3. Relation ~3: x ~3 vy if and only if x — y s a multiple of 7.
Reflexive: Yes, because v — x = 0 is a multiple of 7 for any x € Z.
Symmetric: Yes, because if x —y is a multiple of 7, then y —x = —(x — y)
15 also a multiple of 7.

Transitive: Yes, because if x —y and y — z are multiples of 7, then (x —

y) + (y — 2) = x — 2 is also a multiple of 7.
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Equivalence Classes: The equivalence classes are:
0={r€Z|r=0 (mod7)}, i={rcZ|xz=1 (mod7)},

2={rxcZ|z=2 (mod7)},3={rc€Z|z=3 (mod7)},
i={zecZ|z=4 (mod7)}, 5={zc€Z|z=5 (mod7)},

6={rcZ|r=6 (mod7)}.

Solution 2.9.

We will prove the equivalence in two directions.
(1) If xRy, then & =y:

Since R is an equivalence relation, it satisfies three properties: reflexivity, symme-
try, and transitivity. By the definition of an equivalence relation, if xRy, then x
and y belong to the same equivalence class, denoted © = 1. This means that the

equivalence classes of x and y are identical.

TRy = aT=uy.

(2) If © =19, then xRy:

If © =y, then by the definition of equivalence classes, x and y belong to the same

equivalence class. Therefore, by the properties of an equivalence relation, TRy.

rT=9y = 2Ry.

Thus, we have shown both directions, completing the proof.

Solution 2.10.
Let N* denote the set of positive integers. Define the relation R on N* by xRy if
and only if x divides y.

1. Show that R is a partial order relation on N*:

To show that R is a partial order, we need to verify that it is reflexive,

antisymmetric, and transitive.

e Reflexive: For any x € N*, x diwvides itself, i.e., xRx.
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o Antisymmetric: If 2Ry and yRzx, then x divides y and y divides
x. This implies that x = y, because the only way two distinct positive

integers can divide each other is if they are equal.

o Transitive: If xRy and yRz, then x divides y and y divides z. This

implies that x divides z, so xRz.

Since R s reflexive, antisymmetric, and transitive, it s a partial order on
N*.
2. Is R a total order relation?

A relation is a total order if it is a partial order and, for any two elements x
and y in N*, either xRy or yRx holds. In this case, R is not a total order
because, for example, 2 and 3 do not divide each other, so neither 2R3 nor
3R2 holds. Therefore, R is not a total order.

3. Describe the sets {v € N* | xR5} and {x € N* | 5Rx}:

o The set {x € N* | zR5} is the set of all positive integers that divide 5.

The divisors of 5 are 1 and 5, so:
{r e N* | 2R5} = {1,5}.

o The set {x € N* | bRz} is the set of all positive integers divisible by 5.
This set is:

{x € N* | 5Rz} = {5,10,15,20,25,... }.

4. Does N* have a least element? A greatest element?

o Least element: The least element in N* with respect to the relation
R is 1, because 1 divides all positive integers. Therefore, 1 is the least

element.

e Greatest element: The greatest element in N* with respect to the re-
lation R does not exist because there is no single integer that is divisible

by all positive integers. Thus, there is no greatest element.

Solution 2.11.
Let f be the function from R to R defined by f(x) = 2*> + x — 2.
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1. Definition of f~'({4}): The set f~1({4}) is the preimage of {4} under f,
i.e., it consists of all x € R such that f(z) = 4.

flx)=4 = 2°+2-2=4

Solving this equation:
> +2—-6=0
Factorizing:
(x—2)(x+3)=0
Thus, © =2 or x = —3. Therefore, f~*({4}) = {2, —3}.

2. Is the function f bijective?
Injectivity: [ is not bijective because f is not injective.

Surjectivity: For surjectivity, we would need to show that for every y € R,
there exists x € R such that f(x) = y. However, since the function is
quadratic and opens upwards, it is not surjective over R. Specifically, f(x) =
2?2 4+ 2 — 2 has a minimum value, but no maximum, meaning it cannot take

all real values. Therefore, f is not surjective.

Since [ is neither injective nor surjective, it is not bijective.

3. Definition of f([—1,1]): The set f([—1,1]) is the image of the interval
[—1,1] under the function f, i.e., it is the set of all values f(x) for x €
[_17 1]'

To calculate f([—1,1]), we need to find the minimum and mazimum values
of f(z) = 2* + x — 2 on the interval [—1,1].

First, evaluate f(x) at the endpoints of the interval:
f(=1)=(-1)2+(-1)-2=1-1-2=-2
f()=1"+1-2=1+1-2=0
Next, compute the derivative of f(x):
fl(x) =22 +1
Setting f'(x) = 0 to find critical points:

1
20 4+1=0 = 3::—5
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Since —% € [-1,1], we evaluate [ at x = —%:

1 1) 1 11 9
—_— = —_— —_— — :————2:——
f(72)=(a) + () 2y
Thus, the minimum value of f(x) on [—1,1] is =%, and the mazimum value
15 0.

Therefore, f([—1,1]) = [—9,0].

4. Definition of f~'([-2,4]): The set f~1([-2,4]) is the preimage of the
interval [—2,4], i.e., it consists of all x € R such that f(x) € [—2,4].

We need to solve for x such that —2 < f(x) =2* +x —2 < 4.

First, solve f(z) > —2:
P4rr—2>-2 = 2242>0

Factoring:
z(r+1)>0

This inequality holds when x < —1 or x > 0.

Next, solve f(x) < 4:
?+r—-2<4 = 2*+2-6<0

Factoring:
(x—2)(z+3) <0

This inequality holds when —3 < x < 2.

Combining the two results, we have:
B << -1 or 0<z<2
Therefore, the set f~1([—2,4]) = [-3,—1] U0, 2].

Solution 2.12.

1. Injyectivity:

A function f is injective if f(x1) = f(xo) implies x1 = x5. Let’s assume
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f(x1) = f(x2), which gives:

21’1 . 21'2
1+22 1423

Simplifying this equation:
w1(1+23) = zo(1 + 22),

which does not necessarily imply x1 = x5. Therefore, the function is not
injective.

Counterexample: Toke x1 =2 and x4 = %

Clearly, f(2) = f (%), but 2 # %, proving that the function is not injective.

2. Surjectivity:
A function f is surjective if for every y € R, there exists an x € R such
that f(x) = y. We know that the function f(x) = 1_%22 has a mazimum
at x = 1 where f(1) = 1 and a minimum at x = —1 where f(—1) = —1,
and as x — +oo, f(x) — 0. Therefore, the range of f(x) is (—1,1), and

the function is not surjective because it cannot take values outside of this

interval.

3. Range of f(x):

We now show that the range of f(z) = 1_2;;2 is [—1,1]. To do this, we need

to find the mazimum and minimum values of f(x).

First, we calculate the derivative of f(x):

(1+ 2?)(2) — 2z(2x) _ 2(1 — 2?%)
(1+22)? (1+22)2

f(@) =
Setting f'(x) =0 gives:
l-2°=0 = z==+I

FEvaluating f(z) at x =1 and z = —1:
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As © — +o0, f(x) — 0. Therefore, the range of f(x) is [—1,1], so we have

shown that:

J®) = [-1,1].

4. Restriction g(z) = f(z) on [—1,1]:
Now, we need to show that the restriction of f to [—1,1], which we denote

by g(x) = f(x), is a bijection.

Injectivity: Since the derivative f'(x) is positive over the entire interval

[—1,1], the function f(x) = 13_9;2 18 strictly increasing on this interval.
Therefore, the function f(x) is injective on [—1,1].

Surjectivity: The range of f(x) on [—1,1] is [=1, 1], so the restriction g(x)
18 surjective.

Since g(x) is both injective and surjective, it is a bijection.

Solution 2.13.
Let f . E—F,g:F—G,and h=go f.

1. Ingectivity of f: Show that if h is injective, then f is injective. Also, show

that if h is surjective, then g is surjective.
Proof:

1.1 Injectivity of f: Assume that h = g o f is injective. To show that f is
injective, we need to prove that for any x1,x9 € E, if f(z1) = f(x2), then

1 = To.

Since h(z1) = g(f(21)) and h(z2) = g(f(22)), if f(z1) = f(x2), then
h(z1) = h(z2).
Since h is injective, it follows that
vy = .

Hence, f is injective.

1.2 Surjectivity of g: Assume that h = g o f is surjective. To show that g is
surjective, we need to prove that for every y € G, there exists some v € F

such that g(x) = y.

Since h is surjective, for each y € G, there exists x € E such that h(x) =
g(f(x)) = y. Therefore, for every y € G, we can find an x € F such that

g(x) =y, which proves that g is surjective.
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2. Surjectivity of f: Show that if h is surjective and g is injective, then f is

surjective.
Proof:

Assume that h is surjective and g is injective. To prove that f is surjective,

we need to show that for every y € F, there exists some x € E such that
fl@)=y.

Since h is surjective, for each y € G, there exists z € E such that h(z) =
g(f(2)) = y. Since g is injective, there erists a unique x € F such that
f(x) =y, which implies that f is surjective.

3. Ingectivity of g: Show that if h is injective and f is surjective, then g is
mjective.
Proof:

Assume that h is injective and f is surjective. To show that g is injective,

we need to prove that if g(z1) = g(xs), then x1 = xs.

Since h(xz1) = g(f(x1)) and h(xe) = g(f(x2)), if g(z1) = g(x2), we have
h(l’1> = h(%’g)
Since h is injective, it follows that

f(x1) = f(z2).

Since [ is surjective, there ezists some x € F such that f(x) = y, and
therefore, g(x1) = g(x2).

Hence, g 1s injective.

Solution 2.14.

1. Let x € E. By definition of the indicator function:

o [fxe A, then pa(z) =1 and pac(x) = 0.

o Ifx ¢ A, then pa(z) =0 and pac(x) = 1.

In both cases:

$a(x) + Pac(z) = 1.
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Since this holds for all v € E, we conclude:

Ga+t Qae=1. U

2. Let x € E. We analyze two cases:

(a) If v € AN B:
o Then ¢psnp(z) = 1.
o Sincex € A andx € B, ¢ps(x) =1 and ¢pp(z) = 1.
o Thus, pa(x) ¢p(r)=1-1=1.
(b) If ¢ AN B:
o Then ¢panp(z) = 0.
o At least one of pa(x) or ¢pp(x) is 0 (since x ¢ A orx ¢ B).
o Thus, pa(x) - ¢p(x)=0.

3. In both cases, anp(x) = da(x) - ¢p(x). Therefore:
$ang = ¢a-¢p. U
4. For any x € E:
(a) If 2 € A\ B: ¢ap(x) =1, da(z) =1, dp(z) =0.
$a(z)(1 —dp(r)) =1-(1-0) =1.

(b) If x ¢ A\ B: Eitherx ¢ A orxz € B:
e Subcase 1: v ¢ A pa(x)=0:

da(z)(1 —¢p()) =0 (1 — ¢p(z)) =0.
e Subcase 2: 1 € B ¢p(x) = 1:
¢a(2)(1 — ¢p(2)) = palz) -0 =0.
In both subcases, ¢ p(z) = 0.

Thus, Vo € E, ¢pap(x) = da(z)(1 — ¢p(x)).

das = da(l — ép).
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Algebraic Structures

3.1 Law of internal composition

Definition 3.1.1.
Let E be a non-empty set.

1. A law of internal composition on E is a function from E x FE to E. If
T denotes this function, then the image of the pair (x,y) € E X E under T
15 denoted as xT'y.

2. A structured set is any pair (E,T) where E is a non-empty set and T is

a law of internal composition on E.
Example 3.1.1.
The most common internal composition laws are:
1. + in N,N* Z Q,R,C, but not in 7*,Q*,R*, C*
2. —imZ,QR,C
3. x im NN Z,Q,R,C

4. ] in Q*,R*,C*

©r

o (composition of functions) defined on the set of functions from E to E.

D

. The law @® defined on R? by (x1,y1) ® (22,92) = (x1 + T2, y1 + ¥2)

=

The law T defined on R by xTy =x +y — zy

69
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8. The laws U, N (union, intersection) defined on P(E) (power set of a set E)

Definition 3.1.2. (Properties of laws)
Let (E,T) be a structured set.

1. The law T is called associative on E if (xTy)Tz = xT(yT=z) for all z,y, z
in E.
2. The law T is called commutative on E if xTy = yTx for all x,y in E.

Example 3.1.2.

Addition and multiplication are associative and commutative on N, Z, Q, R, C.

Definition 3.1.3. (Properties of laws)
Let (E,T) be a structured set.

1. An element e of E is called neutral for the law T if,

Ve e E, 2Te=¢eTx = x.

2. If (E,T) has a neutral element e, then an element x of E is said to be

invertible (or symmetrizable) for the law T if there exists an element x’ in
E such that:

2Tz =2'Tr=e
The element ©' is then called the symmetric element of x for the law T.

Proposition 3.1.1.
Let (E,T) be a structured set. If the neutral element of E for the law T exists,

then it is unique.

Proof 3.1.1.

Suppose there exist two neutral elements e and e'. Then,
¢ =ele =e

which implies e = €.

Proposition 3.1.2.
Let (E,T) be a structured set where the law T is associative and has a neutral

element.
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1. If x € E is symmetrizable, then its symmetric element is unique.

2. Ifx € E and y € E are symmetrizable, then xTy is symmetrizable and its
symmetric element (xTy) is given by (zTy) = y'Tx" where =’ denotes the

symmetric element of x and 1y’ denotes the symmetric element of y.

Proof 3.1.2.

1. Let’s suppose an element x has two symmetric elements ' and z”. Then,

2T =e= 2"T(aTr') =2" = (2"Tx)T2' = 2" = 2/ =2".
2. We have
(yT2\T (2Ty) =y'T(2'Tx)Ty =y'Ty = e.

Also,
(2Ty)T(y'Tx") = 2T (yTy )T2' = 2Tx' =e.

Thus, (zTy)" = y'Tx'.

3.2 Groups

3.2.1 Group Structure

Definition 3.2.1.
Let (G,T) be a structured set.
1. We say that (G, T) is a group if

(a) the operation T is associative on G,
(b) there exists a neutral element for the operation T in G,

(c) every element of G is symmetrizable for the operation T.
We also say that the set G has a group structure for the operation T

2. We say that the group (G,T) is commutative (or abelian) if the operation

T is commutative on G.
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Example 3.2.1.

First, examples of groups are provided:
1. Z, Q, R, C equipped with addition.
2. 7, Qf, R* equipped with multiplication.

Example 3.2.2.

For various reasons (to be determined), the following pairs are not groups:
1. (N;4), (R, x).

2. (P(E),U), (P(E),N).

3.2.2 Subgroups

Definition 3.2.2. (Subgroups)
A subgroup of a group (G, *) is a non-empty subset H of G such that:
1. x induces an internal composition law on H.
2. With this law, H forms a group. We denote this as H < G.
Proposition 3.2.1.
The subset H C G is a subgroup of a group (G, *) if and only if
1. H+# 2,
2. V(x,y) € H?, xxy € H,
3. VreH, z7te H.

Example 3.2.3.

1. Let (G,*) be a group. Then G and {ec} are subgroups of G.
2. (Z,+) is a subgroup of (R,+).

Proposition 3.2.2.
The subset H C G is a subgroup of a group (G, *) if and only if
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| H4o,
2. V(x,y) € H? z*xy e H.

Proposition 3.2.3.
The intersection of any family of subgroups of a group (G,x) is a subgroup of
(G, ).

Proof 3.2.1.
Let (H;)ier be a family of subgroups of a group G. Define K =)

section of all H;. The set K is non-empty since it contains the identity element e,

1 Hi, the inter-
which belongs to each subgroup H;. Let x and y be two elements of K. For every
i € I, we have x x y~' € H; because H; is a subgroup. Therefore, x xy~' € K.
This proves that K is a subgroup of G.

Remark 3.2.1.
The arbitrary union of subgroups of a group (G, *) is not necessarily a subgroup of

(G, *).

Example 3.2.4.
Let T be the internal composition law defined on R? by

V(x1,91), (T2,92) € R?, (1,11) * (T2, y2) = (21 + 22, Y1 + Y2).

We have (R%,T) is a group, R x {0} and {0} x R are two subgroups of (R?,T) but
R x {0} U{0} x R does not form a subgroup of (R* T).

Proposition 3.2.4.
The union of two subgroups H and K of the same group (G, %) is a subgroup
(HUK <G)ifand only if H C K or K C H.

Proof 3.2.2.

Suppose H U K is a subgroup of G and H is not included in K, meaning there
exists h € H such that h ¢ K. Let’s show that K C H. Take any k € K. We
have hx k € HN K. However, hx k ¢ K because otherwise h = (h* k)« k' € K.
Hence, hx k € H, implying k =h' x (hx k) € H.
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3.2.3 Examples of Groups
3.2.3.1 The Group Z/nZ

It is initially clear that if n is a positive integer (which we can assume to be positive
and non-zero), the set nZ consisting of integers of the form nk, where k ranges

over Z (the set of multiples of n), is an additive subgroup of (Z, +).

Proposition 3.2.5.
Every subgroup of (Z,+) is of the form nZ.

Proof 3.2.3.

Let S be a subgroup of Z other than {0} and Z. Hence, S does not contain
1. The set of positive integers in S, denoted by ST, has a smallest element n
which is at least 2 (since S is countable and bounded below). Every integer of the
form kn, where k is a natural number, belongs to S (clear from induction since

kn=n+n+...+n). Therefore, S contains nZ.

By Euclidean division, every positive integer in ST that is not of the form kn can
be written as a = kn + r, where 0 < r < n. It follows that r = a — kn > 0.
Since both a and kn are in ST, r must also be in ST. This contradicts n being the

smallest element of ST, hence r = 0. This shows that S = nZ.

We easily show that the congruence relation modulo n, where n € N, due to Gauss,

denoted by =, is defined as:
Ve,yeZ, z=ynle(x—y)enZeIkelZ, y=x—nk.

x = y[n] reads as “x is congruent to y modulo n,” which is an equivalence relation

defined in (Z, +). The quotient set is finite and can thus be written:

Z/nZ = 1{0,1,...,n —1}.

For example: Z/2Z = {0,1}, Z/3Z = {0, 1,2}, Z/4Z = {0,1,2,3}, and Z/6Z =

{0,1,2,3,4,5}.

e Quotient addition on Z/nZ induced by Z is:
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e Quotient multiplication on Z/nZ induced by Z is:

[ ]
—

Ve,y € Z/nZ, §:>.<g./::c><y.

Proposition 3.2.6.
The set (Z/nZ, :L) is a commutative additive group (the quotient group of Z by the

congruence relation).

Proof 3.2.4. Leave it to the reader.

3.2.3.2 Group of Permutations

Definition 3.2.3.

Let E be a set. A permutation of E is a bijection from E to itself. We denote
by Sg the set of permutations of E. If E = {1,...,n}, we simply denote it by
Sn. The set Sg, equipped with the composition of mappings, forms a group with
identity e = id, called the symmetric group on the set E.

Example 3.2.5.
Let’s assume E = {1,2,3,4,5}. A permutation o € S5 is represented as follows:

1 2345
g =
35 21 4

which means o(1) = 3, 0(2) =5, and so on.

3.2.4 Group Homomorphisms

Definition 3.2.4.
Let (G,%) and (H,T) be two groups. A function f from G to H is a group

homomorphism if:

Vo,y e G, flrxy) = f(x)Tf(y)

Moreover:

1. If G=H and x =T, it is called an endomorphism.

2. If f is bigective, it is an tsomorphism.
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3. If f 1s a bijective endomorphism, it is an automorphism.

Example 3.2.6.
The map x +— 2x defines an automorphism of (R, +).

Example 3.2.7.

The function f : R — RY, where RY s the set of positive real numbers under
multiplication, defined by f(x) = exp(x), is a group homomorphism from (R,+)
to (R*, x) because exp(x +y) = exp(z) x exp(y) for all z,y € R.

Proposition 3.2.7. (Properties of Group Homomorphisms)
Let f be a homomorphism from (G,x) to (H,T):
1. f(eg) = €yg.

Ve G fa ) = (f(x))

\S

Co

. If f is an isomorphism, then its inverse f~' is also an isomorphism from

(H,T) to (G, +).

4. If G' < G (subgroup of G), then f(G') < H.

5. If H < H (subgroup of H), then f~'(H') < G.
Definition 3.2.5.

Let f be a homomorphism from G to H:

1. The kernel of f, denoted Ker(f), is the set of pre-images of ey :

Ker(f) ={z € G| f(z) =en}=f""({en})

(Note: f is not assumed to be bijective; hence there’s no mention of the

inverse bijection of f.)

2. The image of f, denoted Im(f), is f(G) (set of images by f of elements of
G).

Remark 3.2.2.
According to the last two points of proposition (3.2.7), the kernel and image of f

are respective subgroups of G and H.

Proposition 3.2.8.
Let f be a homomorphism from (G, *) to (H,T):
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1. f is surjective if and only if Im(f) = H.
2. f is injective if and only if Ker(f) = {eg}.

Proof 3.2.5.

The point (1) follows directly from the definition of surjectivity. To prove (2),
suppose first that f is injective. Let x € Ker(f). Then f(x) = ey, and since
fleq) = en as stated, we conclude f(x) = f(eq), which implies x = eq by injectiv-
ity of f. Thus, Ker(f) = {ec}. Conversely, suppose Ker(f) = {ec} and show that
f is injective. Consider x,y € G such that f(z) = f(y). Then f(z)Tf(y) = en,
so f(xxy') = en, meaning x xy' € Ker(f). The assumption Ker(f) = {ec} then
implies © xy = eq, hence x = y. Injectivity of f is thus demonstrated, completing
the Proof.

3.3 Ring Structure

Definition 3.3.1.
A ring is a set equipped with two binary operations (A, *,T) such that:

1. (A, %) is a commutative group with identity element denoted by 04.

2. The operation T is associative and distributive on the left and right with

respect to *:

Ve,y,z € A, aT(yxz) =xTy*xxTz and (zxy)Tz=2xTzxyTz.

3. The operation T has a neutral element different from 04, denoted by 14.

Example 3.3.1.
(Z,+, %), (Q,+, X), (R,+, x), and (C,+, X) are well-known rings.

Remark 3.3.1.

1. If the operation T is commutative, the ring is called commutative or abelian.
2. The set A — {04} is denoted by A*.

3. For simplicity, we temporarily use the additive (+) and multiplicative (x)
notations instead of the internal operations x and T. Therefore, we refer to
the ring (A, +, x) instead of (A, *,T).
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Definition 3.3.2.

1. A commutative ring (A, +, X) is called integral if it is

(a) non-zero (i.e., 14 # 04),
(b) V(z,y) € A%, zxy=0= (x=0o0ry=0).

2. When a product a x b is zero but neither a nor b is zero, a and b are called

zero divisors.

Example 3.3.2.

1. (Z,+, x) of integers is integral: it has no zero divisors.

2. The ring Z/6Z of residue classes modulo 6 is not integral because i X 5’) = é
hence 2 x 3 = 0. Similarly, Z/AZ.

)

Proposition 3.3.1.
Let (A, +, X) be a ring. The following rules apply in rings:
1. £ x 04 =0y X2 =0y. The element 04 is absorbing for the operation x.
2. V(x,y) € A%, (—z)xy=zx(~y)=—(x xy).
3. VreA (—1u) xz=—ux.
4. ¥(z,y) € A% (—2) x (-y) =z x y.
5 V(r,y,2) € A3, ax(y—z2)=xzxy—xxzand (y—2)xx=yxr—2Xx1.

Proof 3.3.1.

1. x x04 =2 %X (04+04) =2 X044+ 2 x0a. Therefore, by the reqularity of
elements in the group (A,+), x X 04 = 04. Similarly for the other side.

2. xxy+(—z)xy=(z+(—2)) Xy =04 xy = 04. Thus, (—x)xy=—(xXy).
Similarly for the other equality.

3. (—1A)X$+x:<—1A)X$+1AX(E:(—1A—|—1A)X$:0AX£E:OA.

Hence, (—14) x x = —z.
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