2.5 Exercise Solutions

Solution 2.1.

• Union of A and B:

$$A \cup B = \{1, 2, 3, 4, 5, 6, 7\}$$

• Intersection of B and C:

$$B \cap C = \{4, 6\}$$

• Set difference A - B:

$$A - B = \{1, 2\}$$

• Symmetric difference of A and C:

$$A\Delta C = \{1, 3, 5, 8, 10\}$$

Solution 2.2.

1. $a \in E$: True. Since $E = \{a, b, c\}$, a is an element of E.

2. $a \subset E$: False. a is not a subset of E; $\{a\}$ is a subset of E.

3. $\{a\} \subset E$: True. $\{a\}$ is a subset of E because $a \in E$.

4. $\emptyset \in E$: False. \emptyset (empty set) is not an element of E.

5. $\emptyset \subset E$: True. The empty set \emptyset is a subset of every set, including E.

6. $\{\emptyset\} \subset E$: False. $\{\emptyset\}$ is not a subset of E because $\emptyset \notin E$.

Solution 2.3.

1. $A \setminus B = A \cap B^c$ By definition:

$$A \setminus B = \{ x \in A \mid x \notin B \},$$

and on the other hand:

$$A \cap B^c = \{x \in A \mid x \in B^c\} = \{x \in A \mid x \notin B\}.$$

Thus:

$$A \setminus B = A \cap B^c$$
.

2.
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Using the distributive property of intersection over union:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

$$3. \quad A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Using the distributive property of union over intersection:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$$

This can also be verified using element-based reasoning: If $x \in A \cup (B \cap C)$, then $x \in A$ or $x \in B \cap C$. If $x \in B \cap C$, then $x \in B$ and $x \in C$, so $x \in A \cup B$ and $x \in A \cup C$.

Conversely, if $x \in (A \cup B) \cap (A \cup C)$, then $x \in A \cup B$ and $x \in A \cup C$. This implies $x \in A$, or $x \in B$ and $x \in C$, so $x \in A \cup (B \cap C)$.

4.
$$A \triangle B = (A \cup B) \setminus (A \cap B)$$

By the definition of symmetric difference:

$$A \triangle B = (A \setminus B) \cup (B \setminus A).$$

Using part (1):

$$A \setminus B = A \cap B^c$$
 and $B \setminus A = B \cap A^c$.

Thus:

$$A\triangle B = (A \cap B^c) \cup (B \cap A^c).$$

On the other hand:

$$(A \cup B) \setminus (A \cap B) = (A \cup B) \cap (A \cap B)^c$$
.

Since $(A \cap B)^c = A^c \cup B^c$, we have:

$$(A \cup B) \setminus (A \cap B) = (A \cup B) \cap (A^c \cup B^c).$$

Using the distributive property:

$$(A \cup B) \cap (A^c \cup B^c) = [(A \cup B) \cap A^c] \cup [(A \cup B) \cap B^c].$$

Simplifying each term:

$$(A \cup B) \cap A^c = (A \cap A^c) \cup (B \cap A^c) = B \cap A^c,$$

$$(A \cup B) \cap B^c = (A \cap B^c) \cup (B \cap B^c) = A \cap B^c.$$

Thus:

$$(A \cup B) \setminus (A \cap B) = (A \cap B^c) \cup (B \cap A^c).$$

Therefore:

$$A\triangle B = (A \cup B) \setminus (A \cap B).$$

Solution 2.4.

The Power Set P(E)

The power set $\mathcal{P}(E)$ of a set E is the set of all subsets of E, including the empty set and E itself. For $E = \{a, b, c, d\}$, the power set $\mathcal{P}(E)$ is:

$$\mathcal{P}(E) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, E\}.$$

In total, $\mathcal{P}(E)$ contains 2^n subsets, where n=4 is the number of elements in E. Thus, $|\mathcal{P}(E)| = 2^4 = 16$.

Example of a Partition of E

A partition of E is a collection of non-empty, pairwise disjoint subsets of E whose union equals E. An example of a partition of E is:

$$\mathcal{P}_1 = \{\{a, b\}, \{c\}, \{d\}\}.$$

Verify:

- Each subset is non-empty.
- The subsets are pairwise disjoint:

$$\{a,b\} \cap \{c\} = \emptyset$$
, $\{a,b\} \cap \{d\} = \emptyset$, $\{c\} \cap \{d\} = \emptyset$,

• The union of all subsets equals E:

$${a,b} \cup {c} \cup {d} = {a,b,c,d} = E.$$

Thus, $\mathcal{P}_1 = \{\{a,b\}, \{c\}, \{d\}\}\$ is a valid partition of E.

Solution 2.5.

- 1. Images and Pre-images under $f(x) = \sin(x)$:
 - (a) The image of \mathbb{R} under $f(x) = \sin(x)$ is:

$$f(\mathbb{R}) = [-1, 1],$$

because the sine function oscillates between -1 and 1 for all real x.

(b) The image of $[0, 2\pi]$ under $f(x) = \sin(x)$ is:

$$f([0, 2\pi]) = [-1, 1],$$

because $\sin(x)$ completes one full cycle in the interval $[0, 2\pi]$.

(c) The image of $[0, \frac{\pi}{2}]$ under $f(x) = \sin(x)$ is:

$$f([0,\frac{\pi}{2}]) = [0,1],$$

because the sine function is strictly increasing from 0 to 1 in this interval.

(d) The inverse image of [0,1] under $f(x) = \sin(x)$ is:

$$f^{-1}([0,1]) = \bigcup_{k \in \mathbb{Z}} [2k\pi, 2k\pi + \pi],$$

as sine is periodic with period 2π .

(e) The inverse image of [3,4] under $f(x) = \sin(x)$ is:

$$f^{-1}([3,4]) = \emptyset,$$

because $\sin(x) \notin [3, 4]$ for any $x \in \mathbb{R}$.

(f) The inverse image of [1,2] under $f(x) = \sin(x)$ is:

$$f^{-1}([1,2]) = f^{-1}(\{1\}) = \bigcup_{k \in \mathbb{Z}} \left\{ \frac{\pi}{2} + 2k\pi \right\},$$

because $\sin(x) = 1$ occurs only at $x = \frac{\pi}{2} + 2k\pi$ for $k \in \mathbb{Z}$, and $\sin(x) \notin (1,2]$.

2. Comparison of $f(A \setminus B)$ and $f(A) \setminus f(B)$:

Let
$$f(x) = x^2 + 1$$
, $A = [-3, 2]$, and $B = [0, 4]$:

- (a) The set $A \setminus B = [-3, 0)$, as B = [0, 4] removes [0, 4] from A.
- (b) The image of $A \setminus B$ under f(x):

$$f(A \setminus B) = f([-3, 0)) = (1, 10],$$

because $f(x) = x^2 + 1$ is increasing on $[0, \infty)$ and symmetric about x = 0.

(c) The image of A under f(x):

$$f(A) = f([-3, 2]) = [1, 10],$$

and the image of B under f(x):

$$f(B) = f([0,4]) = [1,17].$$

(d) The set $f(A) \setminus f(B)$ is:

$$f(A) \setminus f(B) = [1, 10] \setminus [1, 17] = \emptyset.$$

Comparing:

$$f(A \setminus B) = [1, 10), \quad f(A) \setminus f(B) = \emptyset.$$

Thus, $f(A \setminus B) \neq f(A) \setminus f(B)$.

3. Condition for $f(A \setminus B) = f(A) \setminus f(B)$:

For $f(A \setminus B) = f(A) \setminus f(B)$ to hold, the function f must be **injective** (one-to-one). Injectivity ensures that elements in $A \setminus B$ map uniquely to $f(A \setminus B)$, without overlap from elements in B.

Solution 2.6.

- 1. $E = \mathbb{Z}$ and $x\mathcal{R}y \Leftrightarrow |x| = |y|$:
 - Reflexive: Yes, since |x| = |x| for all $x \in \mathbb{Z}$.
 - Symmetric: Yes, since $|x| = |y| \implies |y| = |x|$.
 - Antisymmetric: No, because |x| = |y| does not imply x = y (e.g., x = 3, y = -3).
 - Transitive: Yes, since |x| = |y| and |y| = |z| imply |x| = |z|.
 - Type: This is an equivalence relation, not an order.
- 2. $E = \mathbb{R} \setminus \{0\}$ and $x\mathcal{R}y \Leftrightarrow xy > 0$:
 - Reflexive: Yes, since $x \cdot x > 0$ for all $x \neq 0$.
 - Symmetric: Yes, since $xy > 0 \implies yx > 0$.
 - Antisymmetric: No, because xy > 0 does not imply x = y (e.g., x = 1, y = 2).
 - Transitive: Yes, since xy > 0 and yz > 0 imply xz > 0.
 - Type: This is an equivalence relation, not an order.
- 3. $E = \mathbb{Z}$ and $x\mathcal{R}y \Leftrightarrow x y$ is even:
 - Reflexive: Yes, since x x = 0, which is even.
 - Symmetric: Yes, since x y even implies y x is even.
 - Antisymmetric: No, because x y even does not imply x = y (e.g., x = 2, y = 4).
 - Transitive: Yes, since x y even and y z even imply x z is even.
 - Type: This is an equivalence relation, not an order.

Summary

- \mathcal{R}_1 , \mathcal{R}_2 , and \mathcal{R}_3 are all equivalence relations.
- None of them is an **order** because they fail antisymmetry.

Solution 2.7.

- 1. $E = \mathbb{R}$ and $x\mathcal{R}y \Leftrightarrow x = -y$:
 - Reflexive: No, since x = -x only holds for x = 0, so it is not reflexive.
 - Symmetric: Yes, since $x = -y \implies y = -x$.
 - Antisymmetric: No, because x = -y and y = -x do not imply x = y (e.g., x = 1, y = -1).
 - Transitive: No, because x = -y and y = -z imply x = -(-z) = z, which contradicts the original definition unless x = 0 or z = 0.
 - Type: This is not an equivalence relation because it is not reflexive, and it is not an order because it is not antisymmetric.
- 2. $E = \mathbb{R}$ and $x\mathcal{R}y \Leftrightarrow \cos^2(x) + \sin^2(y) = 1$:
 - Reflexive: Yes, since $\cos^2(x) + \sin^2(x) = 1$ for all $x \in \mathbb{R}$.
 - Symmetric: Yes, since $\cos^2(x) + \sin^2(y) = 1 \implies \cos^2(y) + \sin^2(x) = 1$.
 - Antisymmetric: No, because $\cos^2(x) + \sin^2(y) = 1$ and $\cos^2(y) + \sin^2(x) = 1$ do not imply x = y.
 - Transitive: Yes, since $\cos^2(x) + \sin^2(y) = 1$ and $\cos^2(y) + \sin^2(z) = 1$ imply $\cos^2(x) + \sin^2(z) = 1$.
 - Type: This is an equivalence relation but not an order.
- 3. $E = \mathbb{N}$ and $x\mathcal{R}y \Leftrightarrow \exists p, q \geq 1$ such that $y = px^q$ (where $p, q \in \mathbb{Z}$):
 - Reflexive: Yes, since $x = px^q$ holds for p = 1, q = 1, implying xRx.
 - Symmetric: No, since $y = px^q$ does not imply $x = py^q$.
 - Antisymmetric: Yes, because if $y = px^q$ and $x = p'y^{q'}$, then x = y.
 - Transitive: Yes, since if $y = px^q$ and $z = p'y^{q'}$, then $z = (pp')x^{qq'}$.
 - Type: This is a partial order, not an equivalence relation.

Solution 2.8.

1. **Relation** \sim_1 : $x \sim_1 y$ if and only if x + y is even.

Reflexive: Yes, because x + x = 2x is always even for any $x \in \mathbb{Z}$.

Symmetric: Yes, because if x + y is even, then y + x = x + y, which is also even.

Transitive: Yes, because if x + y is even and y + z is even, then (x + y) + (y + z) = x + 2y + z is even, implying that x + z is even.

Equivalence Classes: The equivalence classes are:

$$\dot{0} = \{x \in \mathbb{Z} \mid x \text{ is even}\}, \quad \dot{1} = \{x \in \mathbb{Z} \mid x \text{ is odd}\}.$$

2. **Relation** \sim_2 : $x \sim_2 y$ if and only if x and y have the same remainder when divided by 5.

Reflexive: Yes, because $x \mod 5 = x \mod 5$ for any $x \in \mathbb{Z}$.

Symmetric: Yes, because if $x \mod 5 = y \mod 5$, then $y \mod 5 = x \mod 5$.

Transitive: Yes, because if $x \mod 5 = y \mod 5$ and $y \mod 5 = z \mod 5$, then $x \mod 5 = z \mod 5$.

Equivalence Classes: The equivalence classes are:

$$\dot{0} = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{5}\}, \quad \dot{1} = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{5}\},$$

$$\dot{2} = \{x \in \mathbb{Z} \mid x \equiv 2 \pmod{5}\}, \dot{3} = \{x \in \mathbb{Z} \mid x \equiv 3 \pmod{5}\},$$

$$\dot{4} = \{x \in \mathbb{Z} \mid x \equiv 4 \pmod{5}\}.$$

3. **Relation** \sim_3 : $x \sim_3 y$ if and only if x - y is a multiple of 7.

Reflexive: Yes, because x - x = 0 is a multiple of 7 for any $x \in \mathbb{Z}$.

Symmetric: Yes, because if x - y is a multiple of 7, then y - x = -(x - y) is also a multiple of 7.

Transitive: Yes, because if x - y and y - z are multiples of 7, then (x - y) + (y - z) = x - z is also a multiple of 7.

Equivalence Classes: The equivalence classes are:

$$\dot{0} = \{ x \in \mathbb{Z} \mid x \equiv 0 \pmod{7} \}, \quad \dot{1} = \{ x \in \mathbb{Z} \mid x \equiv 1 \pmod{7} \},$$

$$\dot{2} = \{ x \in \mathbb{Z} \mid x \equiv 2 \pmod{7} \}, \quad \dot{3} = \{ x \in \mathbb{Z} \mid x \equiv 3 \pmod{7} \},$$

$$\dot{4} = \{ x \in \mathbb{Z} \mid x \equiv 4 \pmod{7} \}, \quad \dot{5} = \{ x \in \mathbb{Z} \mid x \equiv 5 \pmod{7} \},$$

$$\dot{6} = \{ x \in \mathbb{Z} \mid x \equiv 6 \pmod{7} \}.$$

Solution 2.9.

We will prove the equivalence in two directions.

(1) If xRy, then $\dot{x} = \dot{y}$:

Since \mathcal{R} is an equivalence relation, it satisfies three properties: reflexivity, symmetry, and transitivity. By the definition of an equivalence relation, if $x\mathcal{R}y$, then x and y belong to the same equivalence class, denoted $\dot{x} = \dot{y}$. This means that the equivalence classes of x and y are identical.

$$x\mathcal{R}y \quad \Rightarrow \quad \dot{x} = \dot{y}.$$

(2) If $\dot{x} = \dot{y}$, then xRy:

If $\dot{x} = \dot{y}$, then by the definition of equivalence classes, x and y belong to the same equivalence class. Therefore, by the properties of an equivalence relation, xRy.

$$\dot{x} = \dot{y} \implies x \mathcal{R} y.$$

Thus, we have shown both directions, completing the proof.

Solution 2.10.

Let \mathbb{N}^* denote the set of positive integers. Define the relation \mathcal{R} on \mathbb{N}^* by $x\mathcal{R}y$ if and only if x divides y.

1. Show that R is a partial order relation on \mathbb{N}^* :

To show that R is a partial order, we need to verify that it is reflexive, antisymmetric, and transitive.

• Reflexive: For any $x \in \mathbb{N}^*$, x divides itself, i.e., $x\mathcal{R}x$.

- Antisymmetric: If xRy and yRx, then x divides y and y divides x. This implies that x = y, because the only way two distinct positive integers can divide each other is if they are equal.
- Transitive: If xRy and yRz, then x divides y and y divides z. This implies that x divides z, so xRz.

Since \mathcal{R} is reflexive, antisymmetric, and transitive, it is a partial order on \mathbb{N}^* .

2. Is \mathcal{R} a total order relation?

A relation is a total order if it is a partial order and, for any two elements x and y in \mathbb{N}^* , either $x\mathcal{R}y$ or $y\mathcal{R}x$ holds. In this case, \mathcal{R} is not a total order because, for example, 2 and 3 do not divide each other, so neither $2\mathcal{R}3$ nor $3\mathcal{R}2$ holds. Therefore, \mathcal{R} is not a total order.

- 3. Describe the sets $\{x \in \mathbb{N}^* \mid x\mathcal{R}5\}$ and $\{x \in \mathbb{N}^* \mid 5\mathcal{R}x\}$:
 - The set $\{x \in \mathbb{N}^* \mid x\mathcal{R}5\}$ is the set of all positive integers that divide 5. The divisors of 5 are 1 and 5, so:

$${x \in \mathbb{N}^* \mid x\mathcal{R}5} = {1, 5}.$$

• The set $\{x \in \mathbb{N}^* \mid 5\mathcal{R}x\}$ is the set of all positive integers divisible by 5. This set is:

$${x \in \mathbb{N}^* \mid 5\mathcal{R}x} = {5, 10, 15, 20, 25, \dots}.$$

- 4. Does \mathbb{N}^* have a least element? A greatest element?
 - Least element: The least element in \mathbb{N}^* with respect to the relation \mathcal{R} is 1, because 1 divides all positive integers. Therefore, 1 is the least element.
 - Greatest element: The greatest element in \mathbb{N}^* with respect to the relation \mathcal{R} does not exist because there is no single integer that is divisible by all positive integers. Thus, there is no greatest element.

Solution 2.11.

Let f be the function from \mathbb{R} to \mathbb{R} defined by $f(x) = x^2 + x - 2$.

1. **Definition of** $f^{-1}(\{4\})$: The set $f^{-1}(\{4\})$ is the preimage of $\{4\}$ under f, i.e., it consists of all $x \in \mathbb{R}$ such that f(x) = 4.

$$f(x) = 4 \quad \Rightarrow \quad x^2 + x - 2 = 4$$

Solving this equation:

$$x^2 + x - 6 = 0$$

Factorizing:

$$(x-2)(x+3) = 0$$

Thus, x = 2 or x = -3. Therefore, $f^{-1}(\{4\}) = \{2, -3\}$.

2. Is the function f bijective?

Injectivity: f is not bijective because f is not injective.

Surjectivity: For surjectivity, we would need to show that for every $y \in \mathbb{R}$, there exists $x \in \mathbb{R}$ such that f(x) = y. However, since the function is quadratic and opens upwards, it is not surjective over \mathbb{R} . Specifically, $f(x) = x^2 + x - 2$ has a minimum value, but no maximum, meaning it cannot take all real values. Therefore, f is not surjective.

Since f is neither injective nor surjective, it is not bijective.

3. **Definition of** f([-1,1]): The set f([-1,1]) is the image of the interval [-1,1] under the function f, i.e., it is the set of all values f(x) for $x \in [-1,1]$.

To calculate f([-1,1]), we need to find the minimum and maximum values of $f(x) = x^2 + x - 2$ on the interval [-1,1].

First, evaluate f(x) at the endpoints of the interval:

$$f(-1) = (-1)^2 + (-1) - 2 = 1 - 1 - 2 = -2$$
$$f(1) = 1^2 + 1 - 2 = 1 + 1 - 2 = 0$$

Next, compute the derivative of f(x):

$$f'(x) = 2x + 1$$

Setting f'(x) = 0 to find critical points:

$$2x + 1 = 0 \quad \Rightarrow \quad x = -\frac{1}{2}$$

Since $-\frac{1}{2} \in [-1, 1]$, we evaluate f at $x = -\frac{1}{2}$:

$$f\left(-\frac{1}{2}\right) = \left(-\frac{1}{2}\right)^2 + \left(-\frac{1}{2}\right) - 2 = \frac{1}{4} - \frac{1}{2} - 2 = -\frac{9}{4}$$

Thus, the minimum value of f(x) on [-1,1] is $-\frac{9}{4}$, and the maximum value is 0.

Therefore, $f([-1,1]) = [-\frac{9}{4}, 0]$.

4. **Definition of** $f^{-1}([-2,4])$: The set $f^{-1}([-2,4])$ is the preimage of the interval [-2,4], i.e., it consists of all $x \in \mathbb{R}$ such that $f(x) \in [-2,4]$.

We need to solve for x such that $-2 \le f(x) = x^2 + x - 2 \le 4$.

First, solve $f(x) \ge -2$:

$$x^2 + x - 2 \ge -2 \quad \Rightarrow \quad x^2 + x \ge 0$$

Factoring:

$$x(x+1) \ge 0$$

This inequality holds when $x \le -1$ or $x \ge 0$.

Next, solve $f(x) \leq 4$:

$$x^2 + x - 2 \le 4 \quad \Rightarrow \quad x^2 + x - 6 \le 0$$

Factoring:

$$(x-2)(x+3) \le 0$$

This inequality holds when $-3 \le x \le 2$.

Combining the two results, we have:

$$-3 < x < -1$$
 or $0 < x < 2$

Therefore, the set $f^{-1}([-2,4]) = [-3,-1] \cup [0,2]$.

Solution 2.12.

1. Injectivity:

A function f is injective if $f(x_1) = f(x_2)$ implies $x_1 = x_2$. Let's assume

 $f(x_1) = f(x_2)$, which gives:

$$\frac{2x_1}{1+x_1^2} = \frac{2x_2}{1+x_2^2}.$$

Simplifying this equation:

$$x_1(1+x_2^2) = x_2(1+x_1^2),$$

which does not necessarily imply $x_1 = x_2$. Therefore, the function is **not** injective.

Counterexample: Take $x_1 = 2$ and $x_2 = \frac{1}{2}$:

$$f(2) = \frac{4}{5}, \quad f\left(\frac{1}{2}\right) = \frac{4}{5}.$$

Clearly, $f(2) = f(\frac{1}{2})$, but $2 \neq \frac{1}{2}$, proving that the function is not injective.

2. Surjectivity:

A function f is surjective if for every $y \in \mathbb{R}$, there exists an $x \in \mathbb{R}$ such that f(x) = y. We know that the function $f(x) = \frac{2x}{1+x^2}$ has a maximum at x = 1 where f(1) = 1 and a minimum at x = -1 where f(-1) = -1, and as $x \to \pm \infty$, $f(x) \to 0$. Therefore, the range of f(x) is (-1,1), and the function is **not surjective** because it cannot take values outside of this interval.

3. Range of f(x):

We now show that the range of $f(x) = \frac{2x}{1+x^2}$ is [-1,1]. To do this, we need to find the maximum and minimum values of f(x).

First, we calculate the derivative of f(x):

$$f'(x) = \frac{(1+x^2)(2) - 2x(2x)}{(1+x^2)^2} = \frac{2(1-x^2)}{(1+x^2)^2}.$$

Setting f'(x) = 0 gives:

$$1 - x^2 = 0 \quad \Rightarrow \quad x = \pm 1.$$

Evaluating f(x) at x = 1 and x = -1:

$$f(1) = \frac{2 \times 1}{1 + 1^2} = 1, \quad f(-1) = \frac{2 \times (-1)}{1 + (-1)^2} = -1.$$

As $x \to \pm \infty$, $f(x) \to 0$. Therefore, the range of f(x) is [-1,1], so we have shown that:

$$f(\mathbb{R}) = [-1, 1].$$

4. **Restriction** g(x) = f(x) **on** [-1, 1]:

Now, we need to show that the restriction of f to [-1,1], which we denote by g(x) = f(x), is a bijection.

Injectivity: Since the derivative f'(x) is positive over the entire interval [-1,1], the function $f(x) = \frac{2x}{1+x^2}$ is strictly increasing on this interval.

Therefore, the function f(x) is **injective** on [-1,1].

Surjectivity: The range of f(x) on [-1,1] is [-1,1], so the restriction g(x) is surjective.

Since g(x) is both injective and surjective, it is a bijection.

Solution 2.13.

Let $f: E \to F$, $g: F \to G$, and $h = g \circ f$.

1. Injectivity of f: Show that if h is injective, then f is injective. Also, show that if h is surjective, then g is surjective.

Proof:

1.1 Injectivity of f: Assume that $h = g \circ f$ is injective. To show that f is injective, we need to prove that for any $x_1, x_2 \in E$, if $f(x_1) = f(x_2)$, then $x_1 = x_2$.

Since $h(x_1) = g(f(x_1))$ and $h(x_2) = g(f(x_2))$, if $f(x_1) = f(x_2)$, then

$$h(x_1) = h(x_2).$$

Since h is injective, it follows that

$$x_1 = x_2.$$

Hence, f is injective.

1.2 Surjectivity of g: Assume that $h = g \circ f$ is surjective. To show that g is surjective, we need to prove that for every $y \in G$, there exists some $x \in F$ such that g(x) = y.

Since h is surjective, for each $y \in G$, there exists $x \in E$ such that h(x) = g(f(x)) = y. Therefore, for every $y \in G$, we can find an $x \in F$ such that g(x) = y, which proves that g is surjective.

2. Surjectivity of f: Show that if h is surjective and g is injective, then f is surjective.

Proof:

Assume that h is surjective and g is injective. To prove that f is surjective, we need to show that for every $y \in F$, there exists some $x \in E$ such that f(x) = y.

Since h is surjective, for each $y \in G$, there exists $z \in E$ such that h(z) = g(f(z)) = y. Since g is injective, there exists a unique $x \in F$ such that f(x) = y, which implies that f is surjective.

3. Injectivity of g: Show that if h is injective and f is surjective, then g is injective.

Proof:

Assume that h is injective and f is surjective. To show that g is injective, we need to prove that if $g(x_1) = g(x_2)$, then $x_1 = x_2$.

Since $h(x_1) = g(f(x_1))$ and $h(x_2) = g(f(x_2))$, if $g(x_1) = g(x_2)$, we have

$$h(x_1) = h(x_2).$$

Since h is injective, it follows that

$$f(x_1) = f(x_2).$$

Since f is surjective, there exists some $x \in F$ such that f(x) = y, and therefore, $g(x_1) = g(x_2)$.

Hence, g is injective.

Solution 2.14.

- 1. Let $x \in E$. By definition of the indicator function:
 - If $x \in A$, then $\phi_A(x) = 1$ and $\phi_{A^c}(x) = 0$.
 - If $x \notin A$, then $\phi_A(x) = 0$ and $\phi_{A^c}(x) = 1$.

In both cases:

$$\phi_A(x) + \phi_{A^c}(x) = 1.$$

Since this holds for all $x \in E$, we conclude:

$$\phi_A + \phi_{A^c} = 1$$
. \square

- 2. Let $x \in E$. We analyze two cases:
 - (a) If $x \in A \cap B$:
 - Then $\phi_{A \cap B}(x) = 1$.
 - Since $x \in A$ and $x \in B$, $\phi_A(x) = 1$ and $\phi_B(x) = 1$.
 - Thus, $\phi_A(x) \cdot \phi_B(x) = 1 \cdot 1 = 1$.
 - (b) If $x \notin A \cap B$:
 - Then $\phi_{A \cap B}(x) = 0$.
 - At least one of $\phi_A(x)$ or $\phi_B(x)$ is 0 (since $x \notin A$ or $x \notin B$).
 - Thus, $\phi_A(x) \cdot \phi_B(x) = 0$.
- 3. In both cases, $\phi_{A \cap B}(x) = \phi_A(x) \cdot \phi_B(x)$. Therefore:

$$\phi_{A \cap B} = \phi_A \cdot \phi_B$$
. \square

- 4. For any $x \in E$:
 - (a) If $x \in A \setminus B$: $\phi_{A \setminus B}(x) = 1$, $\phi_A(x) = 1$, $\phi_B(x) = 0$.

$$\phi_A(x)(1-\phi_B(x)) = 1 \cdot (1-0) = 1.$$

- (b) If $x \notin A \setminus B$: Either $x \notin A$ or $x \in B$:
 - Subcase 1: $x \notin A \phi_A(x) = 0$:

$$\phi_A(x)(1-\phi_B(x)) = 0 \cdot (1-\phi_B(x)) = 0.$$

• Subcase 2: $x \in B \ \phi_B(x) = 1$:

$$\phi_A(x)(1 - \phi_B(x)) = \phi_A(x) \cdot 0 = 0.$$

In both subcases, $\phi_{A \setminus B}(x) = 0$.

Thus, $\forall x \in E$, $\phi_{A \setminus B}(x) = \phi_A(x)(1 - \phi_B(x))$.

$$\phi_{A\backslash B} = \phi_A(1 - \phi_B).$$

Chapter 3

Algebraic Structures

3.1 Law of internal composition

Definition 3.1.1.

Let E be a non-empty set.

- 1. A law of internal composition on E is a function from $E \times E$ to E. If T denotes this function, then the image of the pair $(x, y) \in E \times E$ under T is denoted as xTy.
- 2. A structured set is any pair (E,T) where E is a non-empty set and T is a law of internal composition on E.

Example 3.1.1.

The most common internal composition laws are:

- 1. + in $\mathbb{N}, \mathbb{N}^*, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$, but not in $\mathbb{Z}^*, \mathbb{Q}^*, \mathbb{R}^*, \mathbb{C}^*$
- $2. in \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$
- $3. \times in \mathbb{N}, \mathbb{N}^*, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$
- 4. $/ in \mathbb{Q}^*, \mathbb{R}^*, \mathbb{C}^*$
- 5. \circ (composition of functions) defined on the set of functions from E to E.
- 6. The law \oplus defined on \mathbb{R}^2 by $(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$
- 7. The law T defined on \mathbb{R} by xTy = x + y xy

8. The laws \cup , \cap (union, intersection) defined on P(E) (power set of a set E)

Definition 3.1.2. (Properties of laws)

Let (E,T) be a structured set.

- 1. The law T is called **associative** on E if (xTy)Tz = xT(yTz) for all x, y, z in E.
- 2. The law T is called **commutative** on E if xTy = yTx for all x, y in E.

Example 3.1.2.

Addition and multiplication are associative and commutative on \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} .

Definition 3.1.3. (Properties of laws)

Let (E,T) be a structured set.

1. An element e of E is called **neutral** for the law T if,

$$\forall x \in E, \ xTe = eTx = x.$$

2. If (E,T) has a neutral element e, then an element x of E is said to be invertible (or symmetrizable) for the law T if there exists an element x' in E such that:

$$xTx' = x'Tx = e$$

The element x' is then called the symmetric element of x for the law T.

Proposition 3.1.1.

Let (E,T) be a structured set. If the neutral element of E for the law T exists, then it is unique.

Proof 3.1.1.

Suppose there exist two neutral elements e and e'. Then,

$$e' = eTe' = e$$

which implies e = e'.

Proposition 3.1.2.

Let (E,T) be a structured set where the law T is associative and has a neutral element.

- 1. If $x \in E$ is symmetrizable, then its symmetric element is unique.
- 2. If $x \in E$ and $y \in E$ are symmetrizable, then xTy is symmetrizable and its symmetric element (xTy)' is given by (xTy)' = y'Tx' where x' denotes the symmetric element of x and y' denotes the symmetric element of y.

Proof 3.1.2.

1. Let's suppose an element x has two symmetric elements x' and x''. Then,

$$xTx' = e \Rightarrow x''T(xTx') = x'' \Rightarrow (x''Tx)Tx' = x'' \Rightarrow x' = x''.$$

2. We have

$$(y'Tx')T(xTy) = y'T(x'Tx)Ty = y'Ty = e.$$

Also,

$$(xTy)T(y'Tx') = xT(yTy')Tx' = xTx' = e.$$

Thus,
$$(xTy)' = y'Tx'$$
.

3.2 Groups

3.2.1 Group Structure

Definition 3.2.1.

Let (G,T) be a structured set.

- 1. We say that (G,T) is a **group** if
 - (a) the operation T is associative on G,
 - (b) there exists a neutral element for the operation T in G,
 - (c) every element of G is symmetrizable for the operation T.

We also say that the set G has a **group structure** for the operation T.

2. We say that the group (G,T) is **commutative (or abelian)** if the operation T is commutative on G.

Example 3.2.1.

First, examples of groups are provided:

- 1. \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} equipped with addition.
- 2. \mathbb{Z}^* , \mathbb{Q}^* , \mathbb{R}^* equipped with multiplication.

Example 3.2.2.

For various reasons (to be determined), the following pairs are not groups:

- 1. $(\mathbb{N},+)$, (\mathbb{R},\times) .
- 2. $(\mathcal{P}(E), \cup), (\mathcal{P}(E), \cap)$.

3.2.2 Subgroups

Definition 3.2.2. (Subgroups)

A **subgroup** of a group (G,*) is a non-empty subset H of G such that:

- 1. * induces an internal composition law on H.
- 2. With this law, H forms a group. We denote this as H < G.

Proposition 3.2.1.

The subset $H \subset G$ is a **subgroup** of a group (G, *) if and only if

- 1. $H \neq \emptyset$,
- 2. $\forall (x,y) \in H^2, \ x * y \in H$,
- 3. $\forall x \in H, \ x^{-1} \in H$.

Example 3.2.3.

- 1. Let (G,*) be a group. Then G and $\{e_G\}$ are subgroups of G.
- 2. $(\mathbb{Z}, +)$ is a subgroup of $(\mathbb{R}, +)$.

Proposition 3.2.2.

The subset $H \subset G$ is a subgroup of a group (G, *) if and only if

- 1. $H \neq \emptyset$,
- 2. $\forall (x,y) \in H^2, \ x * y^{-1} \in H$.

Proposition 3.2.3.

The intersection of any family of subgroups of a group (G,*) is a subgroup of (G,*).

Proof 3.2.1.

Let $(H_i)_{i\in I}$ be a family of subgroups of a group G. Define $K = \bigcap_{i\in I} H_i$, the intersection of all H_i . The set K is non-empty since it contains the identity element e, which belongs to each subgroup H_i . Let x and y be two elements of K. For every $i \in I$, we have $x * y^{-1} \in H_i$ because H_i is a subgroup. Therefore, $x * y^{-1} \in K$. This proves that K is a subgroup of G.

Remark 3.2.1.

The arbitrary union of subgroups of a group (G, *) is not necessarily a subgroup of (G, *).

Example 3.2.4.

Let T be the internal composition law defined on \mathbb{R}^2 by

$$\forall (x_1, y_1), (x_2, y_2) \in \mathbb{R}^2, (x_1, y_1) * (x_2, y_2) = (x_1 + x_2, y_1 + y_2).$$

We have (\mathbb{R}^2, T) is a group, $\mathbb{R} \times \{0\}$ and $\{0\} \times \mathbb{R}$ are two subgroups of (\mathbb{R}^2, T) but $\mathbb{R} \times \{0\} \cup \{0\} \times \mathbb{R}$ does not form a subgroup of (\mathbb{R}^2, T) .

Proposition 3.2.4.

The union of two subgroups H and K of the same group (G,*) is a subgroup $(H \cup K < G)$ if and only if $H \subset K$ or $K \subset H$.

Proof 3.2.2.

Suppose $H \cup K$ is a subgroup of G and H is not included in K, meaning there exists $h \in H$ such that $h \notin K$. Let's show that $K \subset H$. Take any $k \in K$. We have $h * k \in H \cap K$. However, $h * k \notin K$ because otherwise $h = (h * k) * k' \in K$. Hence, $h * k \in H$, implying $k = h' * (h * k) \in H$.

3.2.3 Examples of Groups

3.2.3.1 The Group $\mathbb{Z}/n\mathbb{Z}$

It is initially clear that if n is a positive integer (which we can assume to be positive and non-zero), the set $n\mathbb{Z}$ consisting of integers of the form nk, where k ranges over \mathbb{Z} (the set of multiples of n), is an additive subgroup of $(\mathbb{Z}, +)$.

Proposition 3.2.5.

Every subgroup of $(\mathbb{Z}, +)$ is of the form $n\mathbb{Z}$.

Proof 3.2.3.

Let S be a subgroup of \mathbb{Z} other than $\{0\}$ and \mathbb{Z} . Hence, S does not contain 1. The set of positive integers in S, denoted by S^+ , has a smallest element n which is at least 2 (since S is countable and bounded below). Every integer of the form kn, where k is a natural number, belongs to S (clear from induction since $kn = n + n + \ldots + n$). Therefore, S contains $n\mathbb{Z}$.

By Euclidean division, every positive integer in S^+ that is not of the form kn can be written as a = kn + r, where 0 < r < n. It follows that r = a - kn > 0. Since both a and kn are in S^+ , r must also be in S^+ . This contradicts n being the smallest element of S^+ , hence r = 0. This shows that $S = n\mathbb{Z}$.

We easily show that the congruence relation modulo n, where $n \in \mathbb{N}$, due to Gauss, denoted by \equiv , is defined as:

$$\forall x, y \in \mathbb{Z}, \quad x \equiv y[n] \Leftrightarrow (x - y) \in n\mathbb{Z} \Leftrightarrow \exists k \in \mathbb{Z}, \quad y = x - nk.$$

 $x \equiv y[n]$ reads as "x is congruent to y modulo n," which is an equivalence relation defined in $(\mathbb{Z}, +)$. The quotient set is finite and can thus be written:

$$\mathbb{Z}/n\mathbb{Z} = \{\stackrel{\bullet}{0}, \stackrel{\bullet}{1}, \dots, \stackrel{\bullet}{n-1}\}.$$

For example: $\mathbb{Z}/2\mathbb{Z} = \{0, 1\}, \mathbb{Z}/3\mathbb{Z} = \{0, 1, 2\}, \mathbb{Z}/4\mathbb{Z} = \{0, 1, 2, 3\}, \text{ and } \mathbb{Z}/6\mathbb{Z} = \{0, 1, 2, 3, 4, 5\}.$

• Quotient addition on $\mathbb{Z}/n\mathbb{Z}$ induced by \mathbb{Z} is:

$$\forall x, y \in \mathbb{Z}/n\mathbb{Z}, \quad \overset{\bullet}{x} + \overset{\bullet}{y} = \overset{\bullet}{x + y}.$$

• Quotient multiplication on $\mathbb{Z}/n\mathbb{Z}$ induced by \mathbb{Z} is:

$$\forall x, y \in \mathbb{Z}/n\mathbb{Z}, \quad \overset{\bullet}{x} \overset{\bullet}{\times} \overset{\bullet}{y} = \overset{\bullet}{x \times y}.$$

Proposition 3.2.6.

The set $(\mathbb{Z}/n\mathbb{Z}, \stackrel{\bullet}{+})$ is a commutative additive group (the quotient group of \mathbb{Z} by the congruence relation).

Proof 3.2.4. Leave it to the reader.

3.2.3.2 Group of Permutations

Definition 3.2.3.

Let E be a set. A permutation of E is a bijection from E to itself. We denote by S_E the set of permutations of E. If $E = \{1, ..., n\}$, we simply denote it by S_n . The set S_E , equipped with the composition of mappings, forms a group with identity e = id, called the symmetric group on the set E.

Example 3.2.5.

Let's assume $E = \{1, 2, 3, 4, 5\}$. A permutation $\sigma \in S_5$ is represented as follows:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 2 & 1 & 4 \end{pmatrix}$$

which means $\sigma(1) = 3$, $\sigma(2) = 5$, and so on.

3.2.4 Group Homomorphisms

Definition 3.2.4.

Let (G,*) and (H,T) be two groups. A function f from G to H is a **group** homomorphism if:

$$\forall x, y \in G, \quad f(x * y) = f(x)Tf(y).$$

Moreover:

- 1. If G = H and * = T, it is called an **endomorphism**.
- 2. If f is bijective, it is an isomorphism.

3. If f is a bijective endomorphism, it is an automorphism.

Example 3.2.6.

The map $x \mapsto 2x$ defines an automorphism of $(\mathbb{R}, +)$.

Example 3.2.7.

The function $f: \mathbb{R} \to \mathbb{R}_+^*$, where \mathbb{R}_+^* is the set of positive real numbers under multiplication, defined by $f(x) = \exp(x)$, is a group homomorphism from $(\mathbb{R}, +)$ to (\mathbb{R}_+^*, \times) because $\exp(x + y) = \exp(x) \times \exp(y)$ for all $x, y \in \mathbb{R}$.

Proposition 3.2.7. (Properties of Group Homomorphisms)

Let f be a homomorphism from (G, *) to (H, T):

- 1. $f(e_G) = e_H$.
- 2. $\forall x \in G, f(x^{-1}) = (f(x))^{-1},$
- 3. If f is an isomorphism, then its inverse f^{-1} is also an isomorphism from (H,T) to (G,*).
- 4. If G' < G (subgroup of G), then f(G') < H.
- 5. If H' < H (subgroup of H), then $f^{-1}(H') < G$.

Definition 3.2.5.

Let f be a homomorphism from G to H:

1. The kernel of f, denoted Ker(f), is the set of pre-images of e_H :

$$Ker(f) = \{x \in G \mid f(x) = e_H\} = f^{-1}(\{e_H\}).$$

(Note: f is not assumed to be bijective; hence there's no mention of the inverse bijection of f.)

2. The image of f, denoted Im(f), is f(G) (set of images by f of elements of G).

Remark 3.2.2.

According to the last two points of proposition (3.2.7), the kernel and image of f are respective subgroups of G and H.

Proposition 3.2.8.

Let f be a homomorphism from (G, *) to (H, T):

- 1. f is surjective if and only if Im(f) = H.
- 2. f is injective if and only if $Ker(f) = \{e_G\}$.

Proof 3.2.5.

The point (1) follows directly from the definition of surjectivity. To prove (2), suppose first that f is injective. Let $x \in Ker(f)$. Then $f(x) = e_H$, and since $f(e_G) = e_H$ as stated, we conclude $f(x) = f(e_G)$, which implies $x = e_G$ by injectivity of f. Thus, $Ker(f) = \{e_G\}$. Conversely, suppose $Ker(f) = \{e_G\}$ and show that f is injective. Consider $x, y \in G$ such that f(x) = f(y). Then $f(x)Tf(y)' = e_H$, so $f(x * y') = e_H$, meaning $x * y' \in Ker(f)$. The assumption $Ker(f) = \{e_G\}$ then implies $x * y' = e_G$, hence x = y. Injectivity of f is thus demonstrated, completing the Proof.

3.3 Ring Structure

Definition 3.3.1.

A ring is a set equipped with two binary operations (A, *, T) such that:

- 1. (A,*) is a commutative group with identity element denoted by 0_A .
- 2. The operation T is associative and distributive on the left and right with respect to *:

$$\forall x, y, z \in A$$
, $xT(y*z) = xTy*xTz$ and $(x*y)Tz = xTz*yTz$.

3. The operation T has a neutral element different from 0_A , denoted by 1_A .

Example 3.3.1.

$$(\mathbb{Z},+,\times), (\mathbb{Q},+,\times), (\mathbb{R},+,\times), and (\mathbb{C},+,\times) are well-known rings.$$

Remark 3.3.1.

- 1. If the operation T is commutative, the ring is called commutative or abelian.
- 2. The set $A \{0_A\}$ is denoted by A^* .
- 3. For simplicity, we temporarily use the additive (+) and multiplicative (\times) notations instead of the internal operations * and T. Therefore, we refer to the ring $(A, +, \times)$ instead of (A, *, T).

Definition 3.3.2.

- 1. A commutative ring $(A, +, \times)$ is called **integral** if it is
 - (a) non-zero (i.e., $1_A \neq 0_A$),
 - (b) $\forall (x,y) \in A^2$, $x \times y = 0 \Rightarrow (x = 0 \text{ or } y = 0)$.
- 2. When a product $a \times b$ is zero but neither a nor b is zero, a and b are called zero divisors.

Example 3.3.2.

- 1. $(\mathbb{Z}, +, \times)$ of integers is integral: it has no zero divisors.
- 2. The ring $\mathbb{Z}/6\mathbb{Z}$ of residue classes modulo 6 is not integral because $2 \times 3 = 6$, hence $2 \times 3 = 0$. Similarly, $\mathbb{Z}/4\mathbb{Z}$.

Proposition 3.3.1.

Let $(A, +, \times)$ be a ring. The following rules apply in rings:

- 1. $x \times 0_A = 0_A \times x = 0_A$. The element 0_A is absorbing for the operation \times .
- 2. $\forall (x,y) \in A^2$, $(-x) \times y = x \times (-y) = -(x \times y)$.
- 3. $\forall x \in A$, $(-1_A) \times x = -x$.
- 4. $\forall (x,y) \in A^2$, $(-x) \times (-y) = x \times y$.
- 5. $\forall (x, y, z) \in A^3$, $x \times (y z) = x \times y x \times z$ and $(y z) \times x = y \times x z \times x$.

Proof 3.3.1.

- 1. $x \times 0_A = x \times (0_A + 0_A) = x \times 0_A + x \times 0_A$. Therefore, by the regularity of elements in the group (A, +), $x \times 0_A = 0_A$. Similarly for the other side.
- 2. $x \times y + (-x) \times y = (x + (-x)) \times y = 0_A \times y = 0_A$. Thus, $(-x) \times y = -(x \times y)$. Similarly for the other equality.
- 3. $(-1_A) \times x + x = (-1_A) \times x + 1_A \times x = (-1_A + 1_A) \times x = 0_A \times x = 0_A$. Hence, $(-1_A) \times x = -x$.