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2.5 Exercise Solutions

Solution 2.1.

• Union of A and B:
A ∪B = {1, 2, 3, 4, 5, 6, 7}

• Intersection of B and C:
B ∩ C = {4, 6}

• Set difference A−B:
A−B = {1, 2}

• Symmetric difference of A and C:

A∆C = {1, 3, 5, 8, 10}

Solution 2.2.

1. a ∈ E: True. Since E = {a, b, c}, a is an element of E.

2. a ⊂ E: False. a is not a subset of E; {a} is a subset of E.

3. {a} ⊂ E: True. {a} is a subset of E because a ∈ E.

4. ∅ ∈ E: False. ∅ (empty set) is not an element of E.

5. ∅ ⊂ E: True. The empty set ∅ is a subset of every set, including E.

6. {∅} ⊂ E: False. {∅} is not a subset of E because ∅ /∈ E.

Solution 2.3.

1. A \B = A ∩Bc By definition:

A \B = {x ∈ A | x /∈ B},

and on the other hand:

A ∩Bc = {x ∈ A | x ∈ Bc} = {x ∈ A | x /∈ B}.
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Thus:
A \B = A ∩Bc.

2. A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

Using the distributive property of intersection over union:

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

3. A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

Using the distributive property of union over intersection:

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

This can also be verified using element-based reasoning: If x ∈ A∪ (B ∩C),
then x ∈ A or x ∈ B∩C. If x ∈ B∩C, then x ∈ B and x ∈ C, so x ∈ A∪B
and x ∈ A ∪ C.
Conversely, if x ∈ (A ∪B) ∩ (A ∪ C), then x ∈ A ∪B and x ∈ A ∪ C. This
implies x ∈ A, or x ∈ B and x ∈ C, so x ∈ A ∪ (B ∩ C).

4. A4B = (A ∪B) \ (A ∩B)

By the definition of symmetric difference:

A4B = (A \B) ∪ (B \ A).

Using part (1):

A \B = A ∩Bc and B \ A = B ∩ Ac.

Thus:
A4B = (A ∩Bc) ∪ (B ∩ Ac).

On the other hand:

(A ∪B) \ (A ∩B) = (A ∪B) ∩ (A ∩B)c.
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Since (A ∩B)c = Ac ∪Bc, we have:

(A ∪B) \ (A ∩B) = (A ∪B) ∩ (Ac ∪Bc).

Using the distributive property:

(A ∪B) ∩ (Ac ∪Bc) = [(A ∪B) ∩ Ac] ∪ [(A ∪B) ∩Bc].

Simplifying each term:

(A ∪B) ∩ Ac = (A ∩ Ac) ∪ (B ∩ Ac) = B ∩ Ac,

(A ∪B) ∩Bc = (A ∩Bc) ∪ (B ∩Bc) = A ∩Bc.

Thus:
(A ∪B) \ (A ∩B) = (A ∩Bc) ∪ (B ∩ Ac).

Therefore:
A4B = (A ∪B) \ (A ∩B).

Solution 2.4.

The Power Set P(E)

The power set P(E) of a set E is the set of all subsets of E, including the empty
set and E itself. For E = {a, b, c, d}, the power set P(E) is:

P(E) =
{
∅, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d},

{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, E}.

In total, P(E) contains 2n subsets, where n = 4 is the number of elements in E.
Thus, |P(E)| = 24 = 16.

Example of a Partition of E

A partition of E is a collection of non-empty, pairwise disjoint subsets of E whose
union equals E. An example of a partition of E is:

P1 = {{a, b}, {c}, {d}}.

Verify:



Chapter 2. Sets, relations and functions. 56

• Each subset is non-empty.

• The subsets are pairwise disjoint:

{a, b} ∩ {c} = ∅, {a, b} ∩ {d} = ∅, {c} ∩ {d} = ∅,

• The union of all subsets equals E:

{a, b} ∪ {c} ∪ {d} = {a, b, c, d} = E.

Thus, P1 = {{a, b}, {c}, {d}} is a valid partition of E.

Solution 2.5.

1. Images and Pre-images under f(x) = sin(x):

(a) The image of R under f(x) = sin(x) is:

f(R) = [−1, 1],

because the sine function oscillates between −1 and 1 for all real x.

(b) The image of [0, 2π] under f(x) = sin(x) is:

f([0, 2π]) = [−1, 1],

because sin(x) completes one full cycle in the interval [0, 2π].

(c) The image of [0, π
2
] under f(x) = sin(x) is:

f([0,
π

2
]) = [0, 1],

because the sine function is strictly increasing from 0 to 1 in this inter-
val.

(d) The inverse image of [0, 1] under f(x) = sin(x) is:

f−1([0, 1]) =
⋃
k∈Z

[2kπ, 2kπ + π] ,

as sine is periodic with period 2π.
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(e) The inverse image of [3, 4] under f(x) = sin(x) is:

f−1([3, 4]) = ∅,

because sin(x) /∈ [3, 4] for any x ∈ R.

(f) The inverse image of [1, 2] under f(x) = sin(x) is:

f−1([1, 2]) = f−1({1}) =
⋃
k∈Z

{π
2

+ 2kπ
}
,

because sin(x) = 1 occurs only at x = π
2

+ 2kπ for k ∈ Z, and sin(x) /∈
(1, 2].

2. Comparison of f(A \B) and f(A) \ f(B):

Let f(x) = x2 + 1, A = [−3, 2], and B = [0, 4]:

(a) The set A \B = [−3, 0), as B = [0, 4] removes [0, 4] from A.

(b) The image of A \B under f(x):

f(A \B) = f([−3, 0)) = (1, 10],

because f(x) = x2 + 1 is increasing on [0,∞) and symmetric about
x = 0.

(c) The image of A under f(x):

f(A) = f([−3, 2]) = [1, 10],

and the image of B under f(x):

f(B) = f([0, 4]) = [1, 17].

(d) The set f(A) \ f(B) is:

f(A) \ f(B) = [1, 10] \ [1, 17] = ∅.

Comparing:
f(A \B) = [1, 10), f(A) \ f(B) = ∅.

Thus, f(A \B) 6= f(A) \ f(B).

3. Condition for f(A \B) = f(A) \ f(B):
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For f(A \ B) = f(A) \ f(B) to hold, the function f must be **injective**
(one-to-one). Injectivity ensures that elements in A \ B map uniquely to
f(A \B), without overlap from elements in B.

Solution 2.6.

1. E = Z and xRy ⇔ |x| = |y|:

• Reflexive: Yes, since |x| = |x| for all x ∈ Z.

• Symmetric: Yes, since |x| = |y| =⇒ |y| = |x|.

• Antisymmetric: No, because |x| = |y| does not imply x = y (e.g.,
x = 3, y = −3).

• Transitive: Yes, since |x| = |y| and |y| = |z| imply |x| = |z|.

• Type: This is an equivalence relation, not an order.

2. E = R \ {0} and xRy ⇔ xy > 0:

• Reflexive: Yes, since x · x > 0 for all x 6= 0.

• Symmetric: Yes, since xy > 0 =⇒ yx > 0.

• Antisymmetric: No, because xy > 0 does not imply x = y (e.g.,
x = 1, y = 2).

• Transitive: Yes, since xy > 0 and yz > 0 imply xz > 0.

• Type: This is an equivalence relation, not an order.

3. E = Z and xRy ⇔ x− y is even:

• Reflexive: Yes, since x− x = 0, which is even.

• Symmetric: Yes, since x− y even implies y − x is even.

• Antisymmetric: No, because x − y even does not imply x = y (e.g.,
x = 2, y = 4).

• Transitive: Yes, since x− y even and y − z even imply x− z is even.

• Type: This is an equivalence relation, not an order.
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Summary

• R1, R2, and R3 are all equivalence relations.

• None of them is an order because they fail antisymmetry.

Solution 2.7.

1. E = R and xRy ⇔ x = −y:

• Reflexive: No, since x = −x only holds for x = 0, so it is not reflexive.

• Symmetric: Yes, since x = −y =⇒ y = −x.

• Antisymmetric: No, because x = −y and y = −x do not imply x = y

(e.g., x = 1, y = −1).

• Transitive: No, because x = −y and y = −z imply x = −(−z) = z,
which contradicts the original definition unless x = 0 or z = 0.

• Type: This is not an equivalence relation because it is not reflexive,
and it is not an order because it is not antisymmetric.

2. E = R and xRy ⇔ cos2(x) + sin2(y) = 1:

• Reflexive: Yes, since cos2(x) + sin2(x) = 1 for all x ∈ R.

• Symmetric: Yes, since cos2(x) + sin2(y) = 1 =⇒ cos2(y) + sin2(x) =

1.

• Antisymmetric: No, because cos2(x) + sin2(y) = 1 and cos2(y) +

sin2(x) = 1 do not imply x = y.

• Transitive: Yes, since cos2(x) + sin2(y) = 1 and cos2(y) + sin2(z) = 1

imply cos2(x) + sin2(z) = 1.

• Type: This is an equivalence relation but not an order.

3. E = N and xRy ⇔ ∃p, q ≥ 1 such that y = pxq (where p, q ∈ Z):

• Reflexive: Yes, since x = pxq holds for p = 1, q = 1, implying xRx.

• Symmetric: No, since y = pxq does not imply x = pyq.

• Antisymmetric: Yes, because if y = pxq and x = p′yq
′, then x = y.

• Transitive: Yes, since if y = pxq and z = p′yq
′, then z = (pp′)xqq

′.

• Type: This is a partial order, not an equivalence relation.
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Solution 2.8.

1. Relation ∼1: x ∼1 y if and only if x+ y is even.

Reflexive: Yes, because x+ x = 2x is always even for any x ∈ Z.

Symmetric: Yes, because if x+ y is even, then y+ x = x+ y, which is also
even.

Transitive: Yes, because if x+ y is even and y + z is even, then (x+ y) +

(y + z) = x+ 2y + z is even, implying that x+ z is even.

Equivalence Classes: The equivalence classes are:

0̇ = {x ∈ Z | x is even}, 1̇ = {x ∈ Z | x is odd}.

2. Relation ∼2: x ∼2 y if and only if x and y have the same remainder when
divided by 5.

Reflexive: Yes, because x mod 5 = x mod 5 for any x ∈ Z.

Symmetric: Yes, because if x mod 5 = y mod 5, then y mod 5 = x

mod 5.

Transitive: Yes, because if x mod 5 = y mod 5 and y mod 5 = z mod 5,
then x mod 5 = z mod 5.

Equivalence Classes: The equivalence classes are:

0̇ = {x ∈ Z | x ≡ 0 (mod 5)}, 1̇ = {x ∈ Z | x ≡ 1 (mod 5)},

2̇ = {x ∈ Z | x ≡ 2 (mod 5)}, 3̇ = {x ∈ Z | x ≡ 3 (mod 5)},

4̇ = {x ∈ Z | x ≡ 4 (mod 5)}.

3. Relation ∼3: x ∼3 y if and only if x− y is a multiple of 7.

Reflexive: Yes, because x− x = 0 is a multiple of 7 for any x ∈ Z.

Symmetric: Yes, because if x− y is a multiple of 7, then y− x = −(x− y)

is also a multiple of 7.

Transitive: Yes, because if x − y and y − z are multiples of 7, then (x −
y) + (y − z) = x− z is also a multiple of 7.
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Equivalence Classes: The equivalence classes are:

0̇ = {x ∈ Z | x ≡ 0 (mod 7)}, 1̇ = {x ∈ Z | x ≡ 1 (mod 7)},

2̇ = {x ∈ Z | x ≡ 2 (mod 7)}, 3̇ = {x ∈ Z | x ≡ 3 (mod 7)},

4̇ = {x ∈ Z | x ≡ 4 (mod 7)}, 5̇ = {x ∈ Z | x ≡ 5 (mod 7)},

6̇ = {x ∈ Z | x ≡ 6 (mod 7)}.

Solution 2.9.

We will prove the equivalence in two directions.

(1) If xRy, then ẋ = ẏ:

Since R is an equivalence relation, it satisfies three properties: reflexivity, symme-
try, and transitivity. By the definition of an equivalence relation, if xRy, then x

and y belong to the same equivalence class, denoted ẋ = ẏ. This means that the
equivalence classes of x and y are identical.

xRy ⇒ ẋ = ẏ.

(2) If ẋ = ẏ, then xRy:

If ẋ = ẏ, then by the definition of equivalence classes, x and y belong to the same
equivalence class. Therefore, by the properties of an equivalence relation, xRy.

ẋ = ẏ ⇒ xRy.

Thus, we have shown both directions, completing the proof.

Solution 2.10.

Let N∗ denote the set of positive integers. Define the relation R on N∗ by xRy if
and only if x divides y.

1. Show that R is a partial order relation on N∗:

To show that R is a partial order, we need to verify that it is reflexive,
antisymmetric, and transitive.

• Reflexive: For any x ∈ N∗, x divides itself, i.e., xRx.
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• Antisymmetric: If xRy and yRx, then x divides y and y divides
x. This implies that x = y, because the only way two distinct positive
integers can divide each other is if they are equal.

• Transitive: If xRy and yRz, then x divides y and y divides z. This
implies that x divides z, so xRz.

Since R is reflexive, antisymmetric, and transitive, it is a partial order on
N∗.

2. Is R a total order relation?

A relation is a total order if it is a partial order and, for any two elements x
and y in N∗, either xRy or yRx holds. In this case, R is not a total order
because, for example, 2 and 3 do not divide each other, so neither 2R3 nor
3R2 holds. Therefore, R is not a total order.

3. Describe the sets {x ∈ N∗ | xR5} and {x ∈ N∗ | 5Rx}:

• The set {x ∈ N∗ | xR5} is the set of all positive integers that divide 5.
The divisors of 5 are 1 and 5, so:

{x ∈ N∗ | xR5} = {1, 5}.

• The set {x ∈ N∗ | 5Rx} is the set of all positive integers divisible by 5.
This set is:

{x ∈ N∗ | 5Rx} = {5, 10, 15, 20, 25, . . . }.

4. Does N∗ have a least element? A greatest element?

• Least element: The least element in N∗ with respect to the relation
R is 1, because 1 divides all positive integers. Therefore, 1 is the least
element.

• Greatest element: The greatest element in N∗ with respect to the re-
lation R does not exist because there is no single integer that is divisible
by all positive integers. Thus, there is no greatest element.

Solution 2.11.

Let f be the function from R to R defined by f(x) = x2 + x− 2.
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1. Definition of f−1({4}): The set f−1({4}) is the preimage of {4} under f ,
i.e., it consists of all x ∈ R such that f(x) = 4.

f(x) = 4 ⇒ x2 + x− 2 = 4

Solving this equation:
x2 + x− 6 = 0

Factorizing:
(x− 2)(x+ 3) = 0

Thus, x = 2 or x = −3. Therefore, f−1({4}) = {2,−3}.

2. Is the function f bijective?

Injectivity: f is not bijective because f is not injective.

Surjectivity: For surjectivity, we would need to show that for every y ∈ R,
there exists x ∈ R such that f(x) = y. However, since the function is
quadratic and opens upwards, it is not surjective over R. Specifically, f(x) =

x2 + x− 2 has a minimum value, but no maximum, meaning it cannot take
all real values. Therefore, f is not surjective.

Since f is neither injective nor surjective, it is not bijective.

3. Definition of f([−1, 1]): The set f([−1, 1]) is the image of the interval
[−1, 1] under the function f , i.e., it is the set of all values f(x) for x ∈
[−1, 1].

To calculate f([−1, 1]), we need to find the minimum and maximum values
of f(x) = x2 + x− 2 on the interval [−1, 1].

First, evaluate f(x) at the endpoints of the interval:

f(−1) = (−1)2 + (−1)− 2 = 1− 1− 2 = −2

f(1) = 12 + 1− 2 = 1 + 1− 2 = 0

Next, compute the derivative of f(x):

f ′(x) = 2x+ 1

Setting f ′(x) = 0 to find critical points:

2x+ 1 = 0 ⇒ x = −1

2



Chapter 2. Sets, relations and functions. 64

Since −1
2
∈ [−1, 1], we evaluate f at x = −1

2
:

f

(
−1

2

)
=

(
−1

2

)2

+

(
−1

2

)
− 2 =

1

4
− 1

2
− 2 = −9

4

Thus, the minimum value of f(x) on [−1, 1] is −9
4
, and the maximum value

is 0.

Therefore, f([−1, 1]) =
[
−9

4
, 0
]
.

4. Definition of f−1([−2, 4]): The set f−1([−2, 4]) is the preimage of the
interval [−2, 4], i.e., it consists of all x ∈ R such that f(x) ∈ [−2, 4].

We need to solve for x such that −2 ≤ f(x) = x2 + x− 2 ≤ 4.

First, solve f(x) ≥ −2:

x2 + x− 2 ≥ −2 ⇒ x2 + x ≥ 0

Factoring:
x(x+ 1) ≥ 0

This inequality holds when x ≤ −1 or x ≥ 0.

Next, solve f(x) ≤ 4:

x2 + x− 2 ≤ 4 ⇒ x2 + x− 6 ≤ 0

Factoring:
(x− 2)(x+ 3) ≤ 0

This inequality holds when −3 ≤ x ≤ 2.

Combining the two results, we have:

−3 ≤ x ≤ −1 or 0 ≤ x ≤ 2

Therefore, the set f−1([−2, 4]) = [−3,−1] ∪ [0, 2].

Solution 2.12.

1. Injectivity:
A function f is injective if f(x1) = f(x2) implies x1 = x2. Let’s assume
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f(x1) = f(x2), which gives:

2x1
1 + x21

=
2x2

1 + x22
.

Simplifying this equation:

x1(1 + x22) = x2(1 + x21),

which does not necessarily imply x1 = x2. Therefore, the function is not
injective.

Counterexample: Take x1 = 2 and x2 = 1
2
:

f(2) =
4

5
, f

(
1

2

)
=

4

5
.

Clearly, f(2) = f
(
1
2

)
, but 2 6= 1

2
, proving that the function is not injective.

2. Surjectivity:
A function f is surjective if for every y ∈ R, there exists an x ∈ R such
that f(x) = y. We know that the function f(x) = 2x

1+x2
has a maximum

at x = 1 where f(1) = 1 and a minimum at x = −1 where f(−1) = −1,
and as x → ±∞, f(x) → 0. Therefore, the range of f(x) is (−1, 1), and
the function is not surjective because it cannot take values outside of this
interval.

3. Range of f(x):

We now show that the range of f(x) = 2x
1+x2

is [−1, 1]. To do this, we need
to find the maximum and minimum values of f(x).

First, we calculate the derivative of f(x):

f ′(x) =
(1 + x2)(2)− 2x(2x)

(1 + x2)2
=

2(1− x2)
(1 + x2)2

.

Setting f ′(x) = 0 gives:

1− x2 = 0 ⇒ x = ±1.

Evaluating f(x) at x = 1 and x = −1:

f(1) =
2× 1

1 + 12
= 1, f(−1) =

2× (−1)

1 + (−1)2
= −1.
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As x→ ±∞, f(x)→ 0. Therefore, the range of f(x) is [−1, 1], so we have
shown that:

f(R) = [−1, 1].

4. Restriction g(x) = f(x) on [−1, 1]:

Now, we need to show that the restriction of f to [−1, 1], which we denote
by g(x) = f(x), is a bijection.

Injectivity: Since the derivative f ′(x) is positive over the entire interval
[−1, 1], the function f(x) = 2x

1+x2
is strictly increasing on this interval.

Therefore, the function f(x) is injective on [−1, 1].

Surjectivity: The range of f(x) on [−1, 1] is [−1, 1], so the restriction g(x)

is surjective.

Since g(x) is both injective and surjective, it is a bijection.

Solution 2.13.

Let f : E → F , g : F → G, and h = g ◦ f .

1. Injectivity of f : Show that if h is injective, then f is injective. Also, show
that if h is surjective, then g is surjective.

Proof:

1.1 Injectivity of f : Assume that h = g ◦ f is injective. To show that f is
injective, we need to prove that for any x1, x2 ∈ E, if f(x1) = f(x2), then
x1 = x2.

Since h(x1) = g(f(x1)) and h(x2) = g(f(x2)), if f(x1) = f(x2), then

h(x1) = h(x2).

Since h is injective, it follows that

x1 = x2.

Hence, f is injective.

1.2 Surjectivity of g: Assume that h = g ◦ f is surjective. To show that g is
surjective, we need to prove that for every y ∈ G, there exists some x ∈ F
such that g(x) = y.

Since h is surjective, for each y ∈ G, there exists x ∈ E such that h(x) =

g(f(x)) = y. Therefore, for every y ∈ G, we can find an x ∈ F such that
g(x) = y, which proves that g is surjective.
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2. Surjectivity of f : Show that if h is surjective and g is injective, then f is
surjective.

Proof:

Assume that h is surjective and g is injective. To prove that f is surjective,
we need to show that for every y ∈ F , there exists some x ∈ E such that
f(x) = y.

Since h is surjective, for each y ∈ G, there exists z ∈ E such that h(z) =

g(f(z)) = y. Since g is injective, there exists a unique x ∈ F such that
f(x) = y, which implies that f is surjective.

3. Injectivity of g: Show that if h is injective and f is surjective, then g is
injective.

Proof:

Assume that h is injective and f is surjective. To show that g is injective,
we need to prove that if g(x1) = g(x2), then x1 = x2.

Since h(x1) = g(f(x1)) and h(x2) = g(f(x2)), if g(x1) = g(x2), we have

h(x1) = h(x2).

Since h is injective, it follows that

f(x1) = f(x2).

Since f is surjective, there exists some x ∈ F such that f(x) = y, and
therefore, g(x1) = g(x2).

Hence, g is injective.

Solution 2.14.

1. Let x ∈ E. By definition of the indicator function:

• If x ∈ A, then φA(x) = 1 and φAc(x) = 0.

• If x /∈ A, then φA(x) = 0 and φAc(x) = 1.

In both cases:
φA(x) + φAc(x) = 1.
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Since this holds for all x ∈ E, we conclude:

φA + φAc = 1. �

2. Let x ∈ E. We analyze two cases:

(a) If x ∈ A ∩B:

• Then φA∩B(x) = 1.

• Since x ∈ A and x ∈ B, φA(x) = 1 and φB(x) = 1.

• Thus, φA(x) · φB(x) = 1 · 1 = 1.

(b) If x /∈ A ∩B:

• Then φA∩B(x) = 0.

• At least one of φA(x) or φB(x) is 0 (since x /∈ A or x /∈ B).

• Thus, φA(x) · φB(x) = 0.

3. In both cases, φA∩B(x) = φA(x) · φB(x). Therefore:

φA∩B = φA · φB. �

4. For any x ∈ E:

(a) If x ∈ A \B: φA\B(x) = 1, φA(x) = 1, φB(x) = 0.

φA(x)(1− φB(x)) = 1 · (1− 0) = 1.

(b) If x /∈ A \B: Either x /∈ A or x ∈ B:

• Subcase 1: x /∈ A φA(x) = 0:

φA(x)(1− φB(x)) = 0 · (1− φB(x)) = 0.

• Subcase 2: x ∈ B φB(x) = 1:

φA(x)(1− φB(x)) = φA(x) · 0 = 0.

In both subcases, φA\B(x) = 0.

Thus, ∀x ∈ E, φA\B(x) = φA(x)(1− φB(x)).

φA\B = φA(1− φB).
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Algebraic Structures

3.1 Law of internal composition

Definition 3.1.1.

Let E be a non-empty set.

1. A law of internal composition on E is a function from E × E to E. If
T denotes this function, then the image of the pair (x, y) ∈ E × E under T
is denoted as xTy.

2. A structured set is any pair (E, T ) where E is a non-empty set and T is
a law of internal composition on E.

Example 3.1.1.

The most common internal composition laws are:

1. + in N,N∗,Z,Q,R,C, but not in Z∗,Q∗,R∗,C∗

2. − in Z,Q,R,C

3. × in N,N∗,Z,Q,R,C

4. / in Q∗,R∗,C∗

5. ◦ (composition of functions) defined on the set of functions from E to E.

6. The law ⊕ defined on R2 by (x1, y1)⊕ (x2, y2) = (x1 + x2, y1 + y2)

7. The law T defined on R by xTy = x+ y − xy

69
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8. The laws ∪, ∩ (union, intersection) defined on P (E) (power set of a set E)

Definition 3.1.2. (Properties of laws)
Let (E, T ) be a structured set.

1. The law T is called associative on E if (xTy)Tz = xT (yTz) for all x, y, z
in E.

2. The law T is called commutative on E if xTy = yTx for all x, y in E.

Example 3.1.2.

Addition and multiplication are associative and commutative on N, Z, Q, R, C.

Definition 3.1.3. (Properties of laws)
Let (E, T ) be a structured set.

1. An element e of E is called neutral for the law T if,

∀x ∈ E, xTe = eTx = x.

2. If (E, T ) has a neutral element e, then an element x of E is said to be
invertible (or symmetrizable) for the law T if there exists an element x′ in
E such that:

xTx′ = x′Tx = e

The element x′ is then called the symmetric element of x for the law T .

Proposition 3.1.1.

Let (E, T ) be a structured set. If the neutral element of E for the law T exists,
then it is unique.

Proof 3.1.1.

Suppose there exist two neutral elements e and e′. Then,

e′ = eTe′ = e

which implies e = e′.

Proposition 3.1.2.

Let (E, T ) be a structured set where the law T is associative and has a neutral
element.
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1. If x ∈ E is symmetrizable, then its symmetric element is unique.

2. If x ∈ E and y ∈ E are symmetrizable, then xTy is symmetrizable and its
symmetric element (xTy)′ is given by (xTy)′ = y′Tx′ where x′ denotes the
symmetric element of x and y′ denotes the symmetric element of y.

Proof 3.1.2.

1. Let’s suppose an element x has two symmetric elements x′ and x′′. Then,

xTx′ = e⇒ x′′T (xTx′) = x′′ ⇒ (x′′Tx)Tx′ = x′′ ⇒ x′ = x′′.

2. We have
(y′Tx′)T (xTy) = y′T (x′Tx)Ty = y′Ty = e.

Also,
(xTy)T (y′Tx′) = xT (yTy′)Tx′ = xTx′ = e.

Thus, (xTy)′ = y′Tx′.

3.2 Groups

3.2.1 Group Structure

Definition 3.2.1.

Let (G, T ) be a structured set.

1. We say that (G, T ) is a group if

(a) the operation T is associative on G,

(b) there exists a neutral element for the operation T in G,

(c) every element of G is symmetrizable for the operation T .

We also say that the set G has a group structure for the operation T .

2. We say that the group (G, T ) is commutative (or abelian) if the operation
T is commutative on G.
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Example 3.2.1.

First, examples of groups are provided:

1. Z, Q, R, C equipped with addition.

2. Z∗, Q∗, R∗ equipped with multiplication.

Example 3.2.2.

For various reasons (to be determined), the following pairs are not groups:

1. (N,+), (R,×).

2. (P(E),∪), (P(E),∩).

3.2.2 Subgroups

Definition 3.2.2. (Subgroups)
A subgroup of a group (G, ∗) is a non-empty subset H of G such that:

1. ∗ induces an internal composition law on H.

2. With this law, H forms a group. We denote this as H < G.

Proposition 3.2.1.

The subset H ⊂ G is a subgroup of a group (G, ∗) if and only if

1. H 6= ∅,

2. ∀(x, y) ∈ H2, x ∗ y ∈ H,

3. ∀x ∈ H, x−1 ∈ H.

Example 3.2.3.

1. Let (G, ∗) be a group. Then G and {eG} are subgroups of G.

2. (Z,+) is a subgroup of (R,+).

Proposition 3.2.2.

The subset H ⊂ G is a subgroup of a group (G, ∗) if and only if
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1. H 6= ∅,

2. ∀(x, y) ∈ H2, x ∗ y−1 ∈ H.

Proposition 3.2.3.

The intersection of any family of subgroups of a group (G, ∗) is a subgroup of
(G, ∗).

Proof 3.2.1.

Let (Hi)i∈I be a family of subgroups of a group G. Define K =
⋂
i∈I Hi, the inter-

section of all Hi. The set K is non-empty since it contains the identity element e,
which belongs to each subgroup Hi. Let x and y be two elements of K. For every
i ∈ I, we have x ∗ y−1 ∈ Hi because Hi is a subgroup. Therefore, x ∗ y−1 ∈ K.
This proves that K is a subgroup of G.

Remark 3.2.1.

The arbitrary union of subgroups of a group (G, ∗) is not necessarily a subgroup of
(G, ∗).

Example 3.2.4.

Let T be the internal composition law defined on R2 by

∀(x1, y1), (x2, y2) ∈ R2, (x1, y1) ∗ (x2, y2) = (x1 + x2, y1 + y2).

We have (R2, T ) is a group, R×{0} and {0}×R are two subgroups of (R2, T ) but
R× {0} ∪ {0} × R does not form a subgroup of (R2, T ).

Proposition 3.2.4.

The union of two subgroups H and K of the same group (G, ∗) is a subgroup
(H ∪K < G) if and only if H ⊂ K or K ⊂ H.

Proof 3.2.2.

Suppose H ∪ K is a subgroup of G and H is not included in K, meaning there
exists h ∈ H such that h /∈ K. Let’s show that K ⊂ H. Take any k ∈ K. We
have h ∗ k ∈ H ∩K. However, h ∗ k /∈ K because otherwise h = (h ∗ k) ∗ k′ ∈ K.
Hence, h ∗ k ∈ H, implying k = h′ ∗ (h ∗ k) ∈ H.
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3.2.3 Examples of Groups

3.2.3.1 The Group Z/nZ

It is initially clear that if n is a positive integer (which we can assume to be positive
and non-zero), the set nZ consisting of integers of the form nk, where k ranges
over Z (the set of multiples of n), is an additive subgroup of (Z,+).

Proposition 3.2.5.

Every subgroup of (Z,+) is of the form nZ.

Proof 3.2.3.

Let S be a subgroup of Z other than {0} and Z. Hence, S does not contain
1. The set of positive integers in S, denoted by S+, has a smallest element n
which is at least 2 (since S is countable and bounded below). Every integer of the
form kn, where k is a natural number, belongs to S (clear from induction since
kn = n+ n+ . . .+ n). Therefore, S contains nZ.

By Euclidean division, every positive integer in S+ that is not of the form kn can
be written as a = kn + r, where 0 < r < n. It follows that r = a − kn > 0.
Since both a and kn are in S+, r must also be in S+. This contradicts n being the
smallest element of S+, hence r = 0. This shows that S = nZ.

We easily show that the congruence relation modulo n, where n ∈ N, due to Gauss,
denoted by ≡, is defined as:

∀x, y ∈ Z, x ≡ y[n]⇔ (x− y) ∈ nZ⇔ ∃k ∈ Z, y = x− nk.

x ≡ y[n] reads as “x is congruent to y modulo n,” which is an equivalence relation
defined in (Z,+). The quotient set is finite and can thus be written:

Z/nZ = {
•
0,
•
1, . . . ,

•

n̂− 1}.

For example: Z/2Z = {
•
0,
•
1}, Z/3Z = {

•
0,
•
1,
•
2}, Z/4Z = {

•
0,
•
1,
•
2,
•
3}, and Z/6Z =

{
•
0,
•
1,
•
2,
•
3,
•
4,
•
5}.

• Quotient addition on Z/nZ induced by Z is:

∀x, y ∈ Z/nZ, •
x
•
+
•
y =

•

x̂+ y.
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• Quotient multiplication on Z/nZ induced by Z is:

∀x, y ∈ Z/nZ, •
x
•
× •y =

•

x̂× y.

Proposition 3.2.6.

The set (Z/nZ,
•
+) is a commutative additive group (the quotient group of Z by the

congruence relation).

Proof 3.2.4. Leave it to the reader.

3.2.3.2 Group of Permutations

Definition 3.2.3.

Let E be a set. A permutation of E is a bijection from E to itself. We denote
by SE the set of permutations of E. If E = {1, . . . , n}, we simply denote it by
Sn. The set SE, equipped with the composition of mappings, forms a group with
identity e = id, called the symmetric group on the set E.

Example 3.2.5.

Let’s assume E = {1, 2, 3, 4, 5}. A permutation σ ∈ S5 is represented as follows:

σ =

(
1 2 3 4 5

3 5 2 1 4

)

which means σ(1) = 3, σ(2) = 5, and so on.

3.2.4 Group Homomorphisms

Definition 3.2.4.

Let (G, ∗) and (H,T ) be two groups. A function f from G to H is a group

homomorphism if:

∀x, y ∈ G, f(x ∗ y) = f(x)Tf(y).

Moreover:

1. If G = H and ∗ = T , it is called an endomorphism.

2. If f is bijective, it is an isomorphism.



Chapter 3. Algebraic Structures 76

3. If f is a bijective endomorphism, it is an automorphism.

Example 3.2.6.

The map x 7→ 2x defines an automorphism of (R,+).

Example 3.2.7.

The function f : R → R∗+, where R∗+ is the set of positive real numbers under
multiplication, defined by f(x) = exp(x), is a group homomorphism from (R,+)

to (R∗+,×) because exp(x+ y) = exp(x)× exp(y) for all x, y ∈ R.

Proposition 3.2.7. (Properties of Group Homomorphisms)
Let f be a homomorphism from (G, ∗) to (H,T ):

1. f(eG) = eH .

2. ∀x ∈ G, f(x−1) =
(
f(x)

)−1
,

3. If f is an isomorphism, then its inverse f−1 is also an isomorphism from
(H,T ) to (G, ∗).

4. If G′ < G (subgroup of G), then f(G′) < H.

5. If H ′ < H (subgroup of H), then f−1(H ′) < G.

Definition 3.2.5.

Let f be a homomorphism from G to H:

1. The kernel of f , denoted Ker(f), is the set of pre-images of eH :

Ker(f) = {x ∈ G | f(x) = eH} = f−1({eH}).

(Note: f is not assumed to be bijective; hence there’s no mention of the
inverse bijection of f .)

2. The image of f , denoted Im(f), is f(G) (set of images by f of elements of
G).

Remark 3.2.2.

According to the last two points of proposition (3.2.7), the kernel and image of f
are respective subgroups of G and H.

Proposition 3.2.8.

Let f be a homomorphism from (G, ∗) to (H,T ):
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1. f is surjective if and only if Im(f) = H.

2. f is injective if and only if Ker(f) = {eG}.

Proof 3.2.5.

The point (1) follows directly from the definition of surjectivity. To prove (2),
suppose first that f is injective. Let x ∈ Ker(f). Then f(x) = eH , and since
f(eG) = eH as stated, we conclude f(x) = f(eG), which implies x = eG by injectiv-
ity of f . Thus, Ker(f) = {eG}. Conversely, suppose Ker(f) = {eG} and show that
f is injective. Consider x, y ∈ G such that f(x) = f(y). Then f(x)Tf(y)′ = eH ,
so f(x ∗ y′) = eH , meaning x ∗ y′ ∈ Ker(f). The assumption Ker(f) = {eG} then
implies x ∗ y′ = eG, hence x = y. Injectivity of f is thus demonstrated, completing
the Proof.

3.3 Ring Structure

Definition 3.3.1.

A ring is a set equipped with two binary operations (A, ∗, T ) such that:

1. (A, ∗) is a commutative group with identity element denoted by 0A.

2. The operation T is associative and distributive on the left and right with
respect to ∗:

∀x, y, z ∈ A, xT (y ∗ z) = xTy ∗ xTz and (x ∗ y)Tz = xTz ∗ yTz.

3. The operation T has a neutral element different from 0A, denoted by 1A.

Example 3.3.1.

(Z,+,×), (Q,+,×), (R,+,×), and (C,+,×) are well-known rings.

Remark 3.3.1.

1. If the operation T is commutative, the ring is called commutative or abelian.

2. The set A− {0A} is denoted by A∗.

3. For simplicity, we temporarily use the additive (+) and multiplicative (×)
notations instead of the internal operations ∗ and T . Therefore, we refer to
the ring (A,+,×) instead of (A, ∗, T ).
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Definition 3.3.2.

1. A commutative ring (A,+,×) is called integral if it is

(a) non-zero (i.e., 1A 6= 0A),

(b) ∀(x, y) ∈ A2, x× y = 0⇒ (x = 0 or y = 0).

2. When a product a× b is zero but neither a nor b is zero, a and b are called
zero divisors.

Example 3.3.2.

1. (Z,+,×) of integers is integral: it has no zero divisors.

2. The ring Z/6Z of residue classes modulo 6 is not integral because
•
2×

•
3 =

•
6,

hence
•
2×

•
3 =

•
0. Similarly, Z/4Z.

Proposition 3.3.1.

Let (A,+,×) be a ring. The following rules apply in rings:

1. x× 0A = 0A × x = 0A. The element 0A is absorbing for the operation ×.

2. ∀(x, y) ∈ A2, (−x)× y = x× (−y) = −(x× y).

3. ∀x ∈ A, (−1A)× x = −x.

4. ∀(x, y) ∈ A2, (−x)× (−y) = x× y.

5. ∀(x, y, z) ∈ A3, x× (y− z) = x× y−x× z and (y− z)×x = y×x− z×x.

Proof 3.3.1.

1. x × 0A = x × (0A + 0A) = x × 0A + x × 0A. Therefore, by the regularity of
elements in the group (A,+), x× 0A = 0A. Similarly for the other side.

2. x×y+(−x)×y = (x+(−x))×y = 0A×y = 0A. Thus, (−x)×y = −(x×y).
Similarly for the other equality.

3. (−1A) × x + x = (−1A) × x + 1A × x = (−1A + 1A) × x = 0A × x = 0A.
Hence, (−1A)× x = −x.
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