2.4 Exercices

Exercice 2.1.

Consider the following sets: $A = \{1, 2, 3, 4, 5\}, B = \{3, 4, 5, 6, 7\}$ and

 $C = \{2, 4, 6, 8, 10\}$. Find the following sets: $(A \cup B)$, $(B \cap C)$, (A - B) and $(A \Delta C)$.

Exercice 2.2.

Let
$$E = \{a, b, c\}$$
 be a set. Can we write:)
$$1 \ a \in E, \ 2) \ a \subset E, \ 3) \ \{a\} \subset E, \ 4) \ \emptyset \in E, 5) \ \emptyset \subset E, \ 6) \ \{\emptyset\} \subset E?$$

Exercice 2.3.

Let A, B, and C be three subsets of a set E. Prove that:

- 1. $A \setminus B = A \cap B^c$.
- 2. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- 3. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
- 4. $A\triangle B = (A \cup B) \setminus (A \cap B)$.

Exercice 2.4. (Power set)

Let $E = \{a, b, c, d\}$. Find the power set $\mathcal{P}(E)$ of E, which is the set of all subsets of E. Give an example of a partition of E, which is a collection of non-empty disjoint subsets of E whose union equals E.

Exercice 2.5.

- 1. What are the images of the sets \mathbb{R} , $[0, 2\pi]$, $[0, \frac{\pi}{2}]$, and the inverse image of the sets [0, 1], [3, 4], [1, 2] under the function $f(x) = \sin(x)$?
- 2. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2 + 1$. Consider the sets A = [-3, 2] and B = [0, 4]. Compare $f(A \setminus B)$ and $f(A) \setminus f(B)$.
- 3. What condition must function f satisfy so that $f(A \setminus B) = f(A) \setminus f(B)$?

Exercice 2.6.

Determine whether the following relations are reflexive, symmetric, antisymmetric, and transitive:

1.
$$E = \mathbb{Z}$$
 and $x\mathcal{R}y \Leftrightarrow |x| = |y|$.

- 2. $E = \mathbb{R} \setminus \{0\}$ and $x\mathcal{R}y \Leftrightarrow xy > 0$.
- 3. $E = \mathbb{Z}$ and $x\mathcal{R}y \Leftrightarrow x y$ is even.

Identify among the above examples which relations are orders and which are equivalence relations.

Exercice 2.7.

Determine whether the following relations are reflexive, symmetric, antisymmetric, and transitive:

- 1. $E = \mathbb{R}$ and $x\mathcal{R}y \Leftrightarrow x = -y$.
- 2. $E = \mathbb{R}$ and $x\mathcal{R}y \Leftrightarrow \cos^2(x) + \sin^2(y) = 1$.
- 3. $E = \mathbb{N}$ and $x\mathcal{R}y \Leftrightarrow \exists p, q \geq 1$ such that $y = px^q$ (where p and q are integers).

Identify among the above examples which relations are orders and which are equivalence relations.

Exercice 2.8.

Let $E = \mathbb{Z}$, the set of all integers. Consider the following relations on E:

- 1. Relation \sim_1 defined by $x \sim_1 y$ if and only if x + y is even.
- 2. Relation \sim_2 defined by $x \sim_2 y$ if and only if x and y have the same remainder when divided by 5.
- 3. Relation \sim_3 defined by $x \sim_3 y$ if and only if x y is a multiple of 7.

For each relation \sim_i (where i = 1, 2, 3):

- 1. Determine if \sim_i is an equivalence relation on \mathbb{Z} . Explain why or why not.
- 2. If \sim_i is an equivalence relation, identify the equivalence classes of \mathbb{Z} under \sim_i .

Exercice 2.9.

Let \mathcal{R} be an equivalence relation on a non-empty set E. Show that

$$\forall x, y \in E, \quad x\mathcal{R}y \quad \Leftrightarrow \quad \dot{x} = \dot{y}.$$

Exercice 2.10.

Let \mathbb{N}^* denote the set of positive integers. Define the relation \mathcal{R} on \mathbb{N}^* by $x\mathcal{R}y$ if and only if x divides y.

- 1. Show that \mathcal{R} is a partial order relation on \mathbb{N}^* .
- 2. Is \mathcal{R} a total order relation?
- 3. Describe the sets $\{x \in \mathbb{N}^* \mid x\mathcal{R}5\}$ and $\{x \in \mathbb{N}^* \mid 5\mathcal{R}x\}$.
- 4. Does \mathbb{N}^* have a least element? A greatest element?

Exercice 2.11.

Let f be the function from \mathbb{R} to \mathbb{R} defined by $f(x) = x^2 + x - 2$.

- 1. Give the definition of $f^{-1}(\{4\})$. Calculate $f^{-1}(\{4\})$.
- 2. Is the function f bijective?
- 3. Give the definition of f([-1,1]). Calculate f([-1,1]).
- 4. Give the definition of $f^{-1}([-2,4])$. Calculate $f^{-1}([-2,4])$.

Exercice 2.12.

Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be defined by $f(x) = \frac{2x}{1+x^2}$.

- 1. Is f injective? Is f surjective?
- 2. Show that $f(\mathbb{R}) = [-1, 1]$.
- 3. Show that the restriction $g: [-1,1] \longrightarrow [-1,1]$ defined by g(x) = f(x) is a bijection.

Exercice 2.13.

Let $f: E \to F$, $g: F \to G$, and $h = g \circ f$.

- 1. Show that if h is injective, then f is injective. Also, show that if h is surjective, then g is surjective.
- 2. Show that if h is surjective and g is injective, then f is surjective.
- 3. Show that if h is injective and f is surjective, then g is injective.

Exercice 2.14.

Let E be a set, and A and B be two subsets of E. Prove the following properties:

1.
$$\phi_A + \phi_{A^c} = 1$$
, where $A^c = E \setminus A$.

2.
$$\phi_{A \cap B} = \phi_A \cdot \phi_B$$
.

3.
$$\phi_{A \cup B} = \phi_A + \phi_B - \phi_A \cdot \phi_B$$
.

4.
$$\phi_{A \setminus B} = \phi_A (1 - \phi_B)$$
.

where ϕ_A is the indicator function of A, defined as

$$\phi_A : E \longrightarrow \{0, 1\}, \quad x \longmapsto \phi_A(x) = \begin{cases} 1, & \text{if } x \in A, \\ 0, & \text{if } x \notin A. \end{cases}$$