Exersise 1((8 points)

1/A: Homogeneous liquid phase (1) (1 phase) (0.5)

- B : Liquid + vapor (2 Phases) (0.5)
- C : vapor phase (1 phase) (0.5)

D: boiling curve (give the composition of the methanol in the liquid phase) (0.5)

E: dew curve (give the composition of the methanol in vapor phase) (0.5)

2/Yes: methanol and water are miscible in the liquid state (we have a single liquid phase) (0.25)

3/1:the molar fraction of methanol in mixture M: $x_{meth} = \frac{2}{2+6} = 0,25 (0.5)$

3/2: the shape of the Analysis curve when the mixture M is heated from 335 K TO 375 K:(1.25)

the reduced variance : $v' = 1 + c - \varphi (0.25)$

4/for the previous mixtre M:

1) composition of the liquid and vapor in equilibrium at 360 K:

A liquid with a composition read horizontally on the boiling curve : $x_{meth}^{l} \sim 0.15(0.25)$, and a vapor with a composition read horizontally on the dew curve: $x_{meth}^{l} = 0.45$ (0.25).

2/the quantities of matter of the constituents in each phase $(n_{meth}^l, n_{meth}^v, n_{wat}^l, n_{wat}^v)$

We know that : $n_T = n_{meth} + n_{wat} = 8 mole (0.25)$

According to the chemical moment theorem: $\frac{n^l}{n^v} = \frac{n_{meth} - n_{meth}^v}{n_{meth}^l - n_{meth}^v} (0.5) = \frac{0.45 - 0.25}{0.25 - 0.15} \sim 2 (0.25)$

Furthermore, $n^{l} + n^{v} = 8$ mole (0.25). Combining these two equations, we find: $n^{l} \sim 2.66$ mole (0.25) and $n^{v} \sim 5.34$ mole (0.25)

Using the molar fractions in the two phases, we deduce: (1)

 $n_{meth}^{l} = x_{meth}^{l} n^{l} = 2.66 X0.15 = 0.399 mole, n_{meth}^{v} = x_{meth}^{v} n^{v} = 5.34 X0.45 = 2.403 mole (0.5)$

 $n_{wat}^{l} = (1 - x_{meth}^{l})n^{l} = 2.66 X0.85 = 2.261 mole, n_{wate}^{v} = (1 - x_{meth}^{v})n^{v} = 5.34X0.55 = 2.937 mole$ (0.5)

Exercise 2:(10 points)

1/A: Homogeneous liquid phase (1) (1 phase) (0.5)

B and C: Liquid + Solid (2 Phases) (1)

2/ This mixture is called "indifferent point".(0.25)

The physical properties of the mixture at this point

-It melts at a constant temperature (0.25)

- has equal solid and liquid phase compositions ($w_1 = w_1^s$). (0.25)

3/Thermal analysis cooling curve at: $w_v=0.1 w_v=0.3$, and $w_v=1$: (2.25)

4/ The temperature at which the first crystal appears is read on the liquidus: approximately 1620°C. (0.5) Horizontally on the solidus, we read the composition of the first crystal to appear: w(1620°C) \approx 0.05.(0.5) 5/ The mixture studied has a mass fraction of vanadium:

 $w_{\rm V} = \frac{100}{100+900} = 0,100.$ (0.5)

-At 1600°C and $w_v=0.1$ the mixture is in the solid+liquid phase (0.25)

A solid with a composition read horizontally on the solidus: $w_v^l(1600^\circ C) \sim 0.06$ (0.25), and a liquid with a composition read horizontally on the liquidus: $w_v^l(1600^\circ C) = 0.16$ (0.25).

According to the chemical moment theorem: $\frac{ml}{m^s} = \frac{w_v - w_v^s}{w_v^l - w_v} = \frac{0.1 - 0.06}{0.16 - 0.1} \sim 0.67.$ (0.5)

Furthermore, $m^{l} + m^{s} = 1000 \text{ kg so } 0.67 \text{m}^{s} + \text{m}^{s} = 1000 \text{ kg } (0.25)$, Combining these equations, we find: $m^{l} \sim 400 \text{ kg } (0.25)$ and $m^{s} \sim 600 \text{ kg } (0.25)$

Using the mass fractions in the two phases, we deduce: (2) (0.5 for each one)

Course questions: (2 points)

A: false (0.25)

We have liquid and vapor phases (0.25)

B: false (0.25)

The vapor pressure of B is lower than that of A(0.25)

C: false (0.25)

Called the liquidus (0.25)

D: True (0.5)