Institute of Science & Technology

Process Engineering – E2 Heat Transfer

Academic year: 2024-2025 Instructor: Dr. Mohamed BOUTI

First name:

Last name:

Homework n°02

Exercise

Consider a steam pipe of length L=20 m, inner radius $r_1=6$ cm, outer radius $r_2=8$ cm, and thermal conductivity k=20 W/m·°C, as shown in **Figure 1**. The inner and outer surfaces of the pipe are maintained at average temperatures of $T_1=150$ °C and $T_2=60$ °C, respectively.

Obtain a general relation for the temperature distribution inside the pipe under steady conditions, and determine the rate of heat loss from the steam through the pipe.

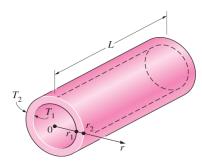


Figure 1

The mathematical formulation of this problem can be expressed as

$$\frac{d}{dr}\left(r\frac{dT}{dr}\right) = 0$$

with boundary conditions

$$T(r_1) = T_1 = 150$$
°C
 $T(r_2) = T_2 = 60$ °C

Integrating the differential equation once with respect to r gives

$$r\frac{dT}{dr} = C_1$$

where C_1 is an arbitrary constant. We now divide both sides of this equation by r to bring it to a readily integrable form,

$$\frac{dT}{dr} = \frac{C_1}{r}$$

Again integrating with respect to r gives

$$T(r) = C_1 \ln r + C_2 \tag{a}$$

We now apply both boundary conditions by replacing all occurrences of r and T(r) in Eq. (a) with the specified values at the boundaries. We get

$$T(r_1) = T_1 \rightarrow C_1 \ln r_1 + C_2 = T_1$$

 $T(r_2) = T_2 \rightarrow C_1 \ln r_2 + C_2 = T_2$

which are two equations in two unknowns, C_1 and C_2 . Solving them simultaneously gives

$$C_1 = \frac{T_2 - T_1}{\ln(r_2/r_1)}$$
 and $C_2 = T_1 - \frac{T_2 - T_1}{\ln(r_2/r_1)} \ln r_1$

Substituting them into Eq. (a) and rearranging, the variation of temperature within the pipe is determined to be

$$T(r) = \left(\frac{\ln(r/r_1)}{\ln(r_2/r_1)}\right)(T_2 - T_1) + T_1$$

The rate of heat loss from the steam is simply the total rate of heat conduction through the pipe, and is determined from Fourier's law to be

Abdelhafid Boussouf University Center – Mila

Institute of Science & Technology

Process Engineering – E2 Heat Transfer

Academic year: 2024-2025 Instructor: Dr. Mohamed BOUTI

$$\dot{Q}_{\text{cylinder}} = -kA \frac{dT}{dr} = -k(2\pi rL) \frac{C_1}{r} = -2\pi kLC_1 = 2\pi kL \frac{T_1 - T_2}{\ln(r_2/r_1)}$$
 (2-59)

The numerical value of the rate of heat conduction through the pipe is determined by substituting the given values

$$\dot{Q} = 2\pi (20 \text{ W/m} \cdot {}^{\circ}\text{C})(20 \text{ m}) \frac{(150 - 60){}^{\circ}\text{C}}{\ln(0.08/0.06)} = 786 \text{ kW}$$

Abdelhafid Boussouf University Center – Mila Institute of Science & Technology

Process Engineering – E2 Heat Transfer

Academic year: 2024-2025 Instructor: Dr. Mohamed BOUTI