People's Democratic Republic of

Algeria

Ministry of Higher Education and Scientific Research Mila University Center

Institute of Science and Technology

Department of Science and

Technology

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التعليم العالي و البحث العلمي المركز الجامعي عبد الحفيظ بوصوف ميلة معهد العلوم و التكنولوجيا قسم علوم و التكنولوجيا

Student's name and surname	Mock Exam 1	اسم و لقب الطالب:
•	Electricity	الرقم الحامعي:
	First	٣٠رم ٢٠ بالحي
	semester	
Date: , 2025	1446 H	ملاحظة :
Time : 15 minutes	2024/2025	. 274

1 Exercise: Electric Forces and Potential in a System of Charges

Q: Calculate the intensity of the electrostatic force acting on the charge q (see figure 1) 1, given that: $q_1=-1.5\cdot 10^{-3}\,C;\;q_2=0.5\cdot 10^{-3}\,C;\;q=-0.2\cdot 10^{-3}\,C;\;r_1=1.2\,\text{m}\;\text{and}\;r_2=0.5\,\text{m}.$

Figure 1: Figure 1 1

• • • • •		 • • •				 	• • •	 • • • •	 	• • •	 • • • •	• • • •	 • • •	 	• • •	• • •		 • • • •	
		 				 		 	 		 		 • • •	 				 • • • •	
		 				 		 	 · • • •		 		 	 				 	
		 				 		 	 . 		 		 	 				 	
• • • • •	• • • •	 • • •	• • • •	• • •	• • • •	 • • •	• • •	 • • •	 	• • •	 • • • •	• • • •	 • • •	 • • • •	• • •	• • •	• • •	 • • • •	

(a) Force due to q_1

(1.5 pts)

$$\begin{split} F_1 &= k \cdot \frac{|q_1 q|}{r_1^2} = 9 \times 10^9 \cdot \frac{1.5 \times 10^{-7} \cdot 0.2 \times 10^{-7}}{(1.2)^2} \\ F_1 &= 9 \times 10^9 \cdot \frac{3 \times 10^{-15}}{1.44} \approx \frac{27 \times 10^{-6}}{1.44} \approx \boxed{1.875 \times 10^{-5} \ N} \end{split}$$

Direction: Toward q₁ (left, attractive force).

(b) Force due to q_2

(1.5 pts)

$$\begin{split} \mathsf{F}_2 &= k \cdot \frac{|\mathsf{q}_2 \mathsf{q}|}{\mathsf{r}_2^2} = 9 \times 10^9 \cdot \frac{0.5 \times 10^{-7} \cdot 0.2 \times 10^{-7}}{(0.5)^2} = 9 \times 10^9 \cdot \frac{1 \times 10^{-15}}{0.25} \\ &= 9 \times 10^9 \cdot 4 \times 10^{-15} = \boxed{3.6 \times 10^{-5} \ \mathrm{N}} \end{split}$$

Direction: Toward q2 (downward, attractive force).

(c) Resultant Force on q

(1.5 pts)

$$\begin{split} F &= \sqrt{F_1^2 + F_2^2} = \sqrt{(1.875 \times 10^{-5})^2 + (3.6 \times 10^{-5})^2} \\ &= \sqrt{3.516 \times 10^{-10} + 1.296 \times 10^{-9}} = \sqrt{1.648 \times 10^{-9}} \approx \boxed{4.06 \times 10^{-5} \ N} \end{split}$$

(d) Direction of Force

(0.5 pt)

$$\tan(\theta) = \frac{\mathsf{F}_2}{\mathsf{F}_1} = \frac{3.6}{1.875} \Rightarrow \theta = \tan^{-1}(1.92) \approx \boxed{62.5^{\circ}}$$

Figure 2: Figure 2. Representation of electrostatic forces

2. Final Answer

 $\text{F} = 4.06 \times 10^{-5} \text{ N}, \quad \theta \approx 62.5^{\circ} \text{ below the horizontal}$

5. Points Distribution

• Force from q₁: 1.5 pts

• Force from q₂: 1.5 pts

• Magnitude of resultant: 1.5 pts

• Direction (angle): 0.5 pt

People's Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research Mila University Center

Institute of Science and Technology

Department of Science and

Technology

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التعليم العالي و البحث العلمي المركز الجامعي عبد الحفيظ بوصوف ميلة معهد العلوم و التكنولوجيا قسم علوم و التكنولوجيا

Student's name and surname	Mock Exam 1 Electricity First	اسم و لقب الطالب: الرقم الجامعي:
Date: , 2025 Time: 15 minutes	semester 1446 H 2024/2025	ملاحظة :

1 Exercise: Applying Gauss's theorem to a sphere

Consider a sphere (S) with center O and radius R, uniformly charged on its surface with a surface charge density σ . Calculate the electrostatic field at every point in space using Gauss's theorem.

Figure 1: Gauss's theorem sphere

•	•	•	•	•	•	• •	•	•	•	• •	•	•	• •	•	•	•	• •	•	•	•	• •	•	•	•	•	• •	•	•	•	•	• •	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	• •	•	•	• •	•	•	•	• •	•	•	• •	•	• •	•	• •	•	•	• •	•	• •	•	•	• •	• •	•	•	• •	•	•	•	• •	• •	•
•			•																•													•										•			•			•	•			•															•												
•	•	•	•	•	•		•	•	•		•	•		•	•	•	•	•	•	•		•	•	•	•		•	•	•	•		•	•	•	•		•	•	•		•	•	•	•	•	•		•	•		•	•	•	• •	•	•		•		•		•	•	• •	•		•	•		• •	•	•		•	•	•	• •	• •	•

2 Solution:

Total Points: 5

- Field inside the sphere: 1.5 pts
- Field outside the sphere (derivation and result): 3 pts
- Final summary with correct units and direction: 0.5 pt

1. Inside the Sphere (r < R)

(1.5 pts)

Since the charge is only distributed on the surface, any Gaussian surface inside the sphere encloses no charge:

$$Q_{enclosed} = 0 \quad \Rightarrow \quad \oint \vec{\mathsf{E}} \cdot d\vec{S} = 0 \quad \Rightarrow \quad \left[\vec{\mathsf{E}}_{in} = 0 \right]$$

2. Outside the Sphere $(r \ge R)$

(3 pts)

Step 1: Use symmetry. Take a spherical Gaussian surface of radius $r \ge R$. The electric field is radial and constant in magnitude on this surface.

Step 2: Apply Gauss's Law:

$$\label{eq:definition} \oint \vec{\mathsf{E}} \cdot d\vec{\mathsf{S}} = \mathsf{E} \cdot 4\pi r^2 = \frac{Q_{\text{enclosed}}}{\epsilon_0}$$

Step 3: Total charge on the sphere:

$$Q = \sigma \cdot 4\pi R^2$$

Step 4: Solve for E:

$$\mathsf{E} \cdot 4\pi r^2 = \frac{\sigma \cdot 4\pi \mathsf{R}^2}{\epsilon_0} \Rightarrow \boxed{\mathsf{E}(\mathsf{r}) = \frac{\sigma \mathsf{R}^2}{\epsilon_0 \mathsf{r}^2} \quad \text{for } \mathsf{r} \geq \mathsf{R}}$$

3. Final Answer and Direction

(0.5 pt)

$$ec{\mathsf{E}}(\mathsf{r}) = egin{cases} 0 & \text{for } \mathsf{r} < \mathsf{R} \ & & \\ \dfrac{\sigma \mathsf{R}^2}{\epsilon_0 \mathsf{r}^2} \cdot \hat{\mathsf{r}} & \text{for } \mathsf{r} \ge \mathsf{R} \end{cases}$$

Direction: Radially outward from the center of the sphere.

People's Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research Mila University Center

Institute of Science and Technology

Department of Science and

Technology

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التعليم العالي و البحث العلمي المركز الجامعي عبد الحفيظ بوصوف ميلة معهد العلوم و التكنولوجيا قسم علوم و التكنولوجيا

Student's name and surname	Mock Exam 1	اسم و لقب الطالب:
•	Electricity	الرقم الحامعي:
	First	٣٠رم ٢٠ بالحي
	semester	
Date: , 2025	1446 H	ملاحظة :
Time : 15 minutes	2024/2025	. 274

1 Exercise: Applying Gauss's Theorem to a Cylinder

A detector cell consists of:

- A hollow cylinder (radius R, length L) with a negatively charged metallic lateral surface (-Q).
- A thin central wire with a positive charge (+Q).

Figure 1: Applying Gauss's Theorem to a Cylinder

•	•	 	•	•	•	 •	•	•	 •	•	•	 •	•	•	•	•	•	•	•	•	 •	•	•	 •	•	•	•	•	•	•	 	•	•	•	•	 •	•	•	 •	•	•	•	 •	•	•	•	 •	•	•	 •	•	•	 •	•	•	•	•	•	•	 •	•	•		. •	•	•	 . •
					•			•												•				 							 	•							 							•	 	•			•															•	
								•																 							 								 							•									•									. .			

Problem Statement

A detector cell consists of:

- A **hollow metallic cylinder** (radius R, length L) carrying a negative surface charge -Q.
- A **thin central wire** (length L) carrying a positive charge +Q.

Using Gauss's theorem, calculate the **electrostatic field** in the different regions:

- 1. Inside the cylinder (i.e., r < R)
- 2. Outside the cylinder (i.e., r > R)

Total Score: 5 points

- Use of Gauss's law and symmetry: 1 pt
- Electric field for r < R: 2 pts
- Electric field for r > R: 1 pt
- Final conclusion and clarity of direction: 1 pt

1. Symmetry and Gauss's Law

(1 pt)

Due to cylindrical symmetry, the electric field is radial and depends only on the radial distance r. Use a cylindrical Gaussian surface of radius r and length L.

Gauss's law:

$$\oint \vec{\mathsf{E}} \cdot d\vec{S} = \frac{Q_{\text{enc}}}{\epsilon_0} \quad \Rightarrow \quad \mathsf{E}(2\pi r \mathsf{L}) = \frac{Q_{\text{enc}}}{\epsilon_0} \Rightarrow \mathsf{E}(r) = \frac{Q_{\text{enc}}}{2\pi \epsilon_0 r \mathsf{L}}$$

2. Case 1: Inside the Cylinder (r < R)

(2 pts)

For r < R, the Gaussian surface encloses only the inner wire, which carries charge +Q.

$$Q_{enc} = + Q \quad \Rightarrow \quad E(r) = \frac{Q}{2\pi\epsilon_0 r L}$$

$$\boxed{ E(r) = \frac{Q}{2\pi\epsilon_0 rL} \quad \text{for } r < R }$$

Direction: Radially outward from the wire.

3. Case 2: Outside the Cylinder (r > R)

(1 pt)

Now the Gaussian surface encloses both the inner wire +Q and the cylindrical shell -Q, so:

$$Q_{enc} = +Q + (-Q) = 0 \quad \Rightarrow \quad \boxed{ \mathsf{E}(\mathsf{r}) = 0 \quad \text{for } \mathsf{r} > \mathsf{R} }$$

4. Final Answer and Direction

(1 pt)

$$\vec{E}(r) = \begin{cases} \frac{Q}{2\pi\epsilon_0 rL} \cdot \hat{r} & \text{if } 0 < r < R \\ 0 & \text{if } r > R \end{cases}$$

Note: The electric field exists only inside the cylinder and points radially outward due to the positive central wire.

People's Democratic Republic of

Algeria

Ministry of Higher Education and
Scientific Research
Mila University Center

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التعليم العالي و البحث العلمي المركز الجامعي عبد الحفيظ بوصوف ميلة معهد العلوم و التكنولوجيا قسم علوم و التكنولوجيا

Institute of Science and Technology

Department of Science and

Technology

Student's name and surname	Mock Exam 1	اسم و لقب الطالب:
•	Electricity First	الرفم الحامعي:
Date: , 2025 Time: 15 minutes	semester 1446 H 2024/2025	ملاحظة :

1 Exercise: Electric Forces and Potential in a System of Charges

1. Given:

- Three point charges placed at the vertices of an equilateral triangle with side length $a=2\,\mathrm{cm}$.
- Charge values: $q_1 = q$, $q_2 = 2q$, $q_3 = 3q$ where q = 1C.

2. Required:

(a)	Cai	cuia	ie in	ie ei	ectr	ic i	orce	ac	ıırış	g or	ı ez	icn	cna	ırge	•										
(b)	Cal	cula	te th	le el	ectr	ic p	oter	ıtia	l at	the	in	ters	ecti	on	poir	ıt o	f th	e tri	iang	gle's	me	dia	ns (cent	roid)
 • • • •		• • • •		. .							• • •		• • •		• • • •			• • •		• • • •					
 • • • •				. .																					
 				. .					• • • •																
 				. .																					
 				. .																					
 				, ,																					

2 . Solution

(a) Electric Force on Each Charge

(3 pts)

Formula:

$$\mbox{F} = \frac{1}{4\pi\epsilon_0} \frac{|q_i q_j|}{r^2} \quad \mbox{with } \epsilon_0 = 8.854 \times 10^{-12} \mbox{ F/m} \label{eq:F}$$

All sides are equal: r = a = 0.02m

Force on q_1 due to q_2 :

$$\mathsf{F}_{12} = \frac{9 \times 10^9 \cdot 1 \cdot 2}{(0.02)^2} = 4.5e13$$

Force on q₁ due to q₃:

$$\mathsf{F}_{13} = \frac{9 \times 10^9 \cdot 1 \cdot 3}{(0.02)^2} = 6.75e13$$

Net Force on q_1 (vector sum):

$$\begin{split} F_{\text{net},1} &= \sqrt{F_{12}^2 + F_{13}^2 + 2F_{12}F_{13}\cos(60^\circ)} \\ &= \sqrt{(4.5e13)^2 + (6.75e13)^2 + 2\cdot 4.5e13\cdot 6.75e13\cdot 0.5} \approx 1.09e14 \end{split}$$

(Repeat similarly for other charges using symmetry.)

Points distribution:

- Correct use of Coulomb's Law: 1 pt
- Correct numerical calculations for pairwise forces: 1 pt
- Vector addition with angle reasoning: 1 pt

(b) Electric Potential at the Centroid

(2 pts)

Formula:

$$V = \frac{1}{4\pi\epsilon_0} \sum_{i} \frac{q_i}{r_i}$$

Centroid distance:

$$r = \frac{a}{\sqrt{3}} = \frac{0.02}{\sqrt{3}} \approx 0.01155m$$

$$V = \frac{9 \times 10^9}{0.01155} (1 + 2 + 3) = \frac{9 \times 10^9 \cdot 6}{0.01155} \approx 4.67 \text{e} 12$$

Points distribution:

- Correct application of potential formula and distance from centroid: 1 pt
- Correct numerical calculation: 1 pt

4. Final Answers

(a) The net force on q_1 is approximately $\boxed{1.09\times 10^{14}\,\text{N}}$

(b) The electric potential at the centroid is $\boxed{4.67 \times 10^{12}\mathrm{V}}$