Chapter

5

Study of Correlation and Regression

Conter	nts ————————————————————————————————————	
	Case 1: Two-row table	2
	5.1.1 Regression Line (Least Squares Method)	2
	5.1.2 Linear Correlation Coefficient	3
5.2	Case 3: Contingency Table	5

Bivariate Data Set

Definition 5.0.1. The simultaneous study of two statistical variables on the same population

Scatter Plot

Definition 5.0.2. The set of points M_i with coordinates (x_i, y_i) .

There are two cases

5.1 Case 1: Two-row table

x_i	x_1	x_2	 x_n
y_i	y_1	y_2	 y_n

Definition 5.1.1. Marginal Means

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

Marginal Variances

$$V(X) = \left(\frac{1}{n} \sum_{i=1}^{n} x_i^2\right) - \bar{X}^2$$

$$V(Y) = \left(\frac{1}{n} \sum_{i=1}^{n} y_i^2\right) - \bar{Y}^2$$

Standard Deviations

$$\delta_X = \sqrt{V(X)}$$

$$\delta_Y = \sqrt{V(Y)}$$

Covariance

$$cov(X, Y) = \left(\frac{1}{n}\sum_{i=1}^{n}x_{i}y_{i}\right) - \bar{X}\bar{Y}$$

5.1.1 Regression Line (Least Squares Method)

Theorem 5.1.1. The regression line of Y on X, denoted $D_Y(X)$ has the equation

$$Y = aX + b$$
 where

$$a = \frac{cov(X, Y)}{V(X)}$$

$$b = \bar{Y} - a\bar{X}$$

Property 5.1.1. • *The regression line is unique*

2 It always passes through the point (\bar{X}, \bar{Y})

5.1.2 Linear Correlation Coefficient

Definition 5.1.2. The linear correlation coefficient of a bivariate data series is

$$r = \frac{cov(X, Y)}{\delta_X \delta_Y}$$

Remark 5.1.1. 1 $0 -1 \le r \le 1$

2 If r = 0 no correlation (X and Y are independent).

3 If 0 < r < 1 weak, moderate, or strong positive correlation between X and Y.

4 If -1 < r < 0 weak, moderate, or strong negative correlation between X and Y.

Example 5.1.1. We have recorded the fuel consumption (in L/100km) for a car model at different speeds (in km/h). The following table was obtained:

Speed x _i	60	70	90	110	130	150
Fuel consumption y_i	3	3.1	3.7	4.7	6	9

Marginal Means

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} x_i = 101.66$$
 $\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} y_i = 4.91$

Marginal Variances

$$V(X) = \left(\frac{1}{n}\sum_{i=1}^{n}x_i^2\right) - \bar{X}^2 = 1015.24 \qquad V(Y) = \left(\frac{1}{n}\sum_{i=1}^{n}y_i^2\right) - \bar{Y}^2 = 4.46$$

Standard Deviations

$$\delta_X = \sqrt{V(X)} = 31.86$$
 $\delta_Y = \sqrt{V(Y)} = 2.11$

Covariance

$$cov(X, Y) = \left(\frac{1}{n} \sum_{i=1}^{n} x_i y_i\right) - \bar{X}\bar{Y} = 63.68$$

Regression Line, Y = aX + b

$$a = \frac{cov(X, Y)}{V(X)} = 0.0627$$

$$b = \bar{Y} - a\bar{X} = -1.46$$

$$Y = 0.0627X - 1.46$$

Correlation Coefficient

$$r = \frac{cov(X, Y)}{\delta_X \delta_Y} = 0.947$$

so there is a strong positive linear correlation between X and Y.

5.2 Case 3: Contingency Table

XY	y_1	y_2	 y_c
x_1	n_{11}	n_{12}	 n_{1c}
x_2			
:			
x_l	n_{l1}		n_{lc}

Definition 5.2.1. *Marginal Distributions*

x_i	x_1	x_2	 x_l
n_i	n_1	n_2	 n_l

y_j	y_1	y_2	•••	y_c
n_j	n_1	n_2		n_c

Marginal Means

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{l} n_i x_i \qquad \bar{Y} = \frac{1}{n} \sum_{i=1}^{c} n_i y_i$$

Marginal Variances

$$V(X) = \left(\frac{1}{n} \sum_{i=1}^{l} n_i x_i^2\right) - \bar{X}^2 \qquad V(Y) = \left(\frac{1}{n} \sum_{j=1}^{c} n_j y_j^2\right) - \bar{Y}^2$$

Standard Deviations

$$\delta_X = \sqrt{V(X)}$$
 $\delta_Y = \sqrt{V(Y)}$

Covariance

$$cov(X,Y) = \left(\frac{1}{n}\sum_{i=1}^{l}\sum_{j=1}^{c}n_{ij}x_{i}y_{i}\right) - \bar{X}\bar{Y}$$

Example 5.2.1.

XY	1	2	4	n_i
3	2	0	3	5
5	4	6	1	11
6	5	1	7	13
n_j	11	7	11	n=29

Marginal Distributions

x_i	3	5	6
n_i	5	11	13

y_j	1	2	4
n_j	11	7	11

Marginal Means

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{l} n_i x_i = 5,10$$
 $\bar{Y} = \frac{1}{n} \sum_{i=1}^{c} n_j y_i = 2.38$

Marginal Variances

$$V(X) = \left(\frac{1}{n}\sum_{i=1}^{l}n_{i}x_{i}^{2}\right) - \bar{X}^{2} = 1.13 \qquad V(Y) = \left(\frac{1}{n}\sum_{j=1}^{c}n_{j}y_{j}^{2}\right) - \bar{Y}^{2} = 1.75$$

Standard Deviations

$$\delta_X = \sqrt{V(X)} = 1.06$$
 $\delta_Y = \sqrt{V(Y)} = 1.32$

Covariance

$$cov(X, Y) = \left(\frac{1}{n} \sum_{i=1}^{l} \sum_{j=1}^{c} n_{ij} x_i y_j\right) - \bar{X}\bar{Y} = 0$$

Example 5.2.2. An experiment was conducted on 250 individuals to study the relationship between age X and sleep duration Y. The following table was obtained

X/Y	[5,7[[7,9[[9,11[[11,15[
[1,3[0	0	2	36
[3,11[0	3	12	26
[11,19[2	8	35	16
[19,31[0	26	22	10
[31,59[26	15	6	5

1- Marginal Distributions

X	[1,3[[3,11[[11,19[[19,31[[31,59[
n_i	38	41	61	58	52
c_i	2	7	15	25	45

Υ	[5,7[[7,9[[9,11[[11,15[
n_j	28	52	77	93
c_j	6	8	10	13

2- Marginal Means

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{l} n_i c_i = 20.27$$
 $\bar{Y} = \frac{1}{n} \sum_{i=1}^{c} n_i c_i = 10.25$

Marginal Variances

$$V(X) = \left(\frac{1}{n}\sum_{i=1}^{l}n_{i}c_{i}^{2}\right) - \bar{X}^{2} = 218.87 \qquad V(Y) = \left(\frac{1}{n}\sum_{j=1}^{c}n_{j}c_{j}^{2}\right) - \bar{Y}^{2} = 5.95$$

Standard Deviations

$$\delta_X = \sqrt{V(X)} = 14.79$$
 $\delta_Y = \sqrt{V(Y)} = 2.44$

3- Covariance

$$cov(X, Y) = \left(\frac{1}{n} \sum_{i=1}^{l} \sum_{j=1}^{c} n_{ij} c_i c_j\right) - \bar{X}\bar{Y} = -24.95$$

Correlation Coefficient

$$r = \frac{cov(X, Y)}{\delta_X \delta_Y} = -0.67$$

so there is a strong negative linear correlation between X and Y.

4- Regression Line, Y = aX + b

$$a = \frac{cov(X,Y)}{V(X)} = -0.11$$

$$b = \bar{Y} - a\bar{X} = 12.48$$

$$Y = -0.11X + 12.48$$

5- Estimate the sleep duration for a 66-year-old individual

$$Y = -0.11X + 12.48 = -0.11(66) + 12.48 = 5.22h$$