Chapter Hypothesis Testing

 Conter 	nts	
4.1	Goodness-of-Fit Test	2
4.2	Homogeneity Test	4
4.3	Independence Test	6

Definition 4.0.1. (*Statistical Hypothesis*)

A statistical hypothesis is a statement about the values of parameters of a population. Null Hypothesis H_0 : The hypothesis we aim to test.. Alternative Hypothesis H_1 : The negation of H_0 .

Definition 4.0.2. (Hypothesis Test)

A process intended to provide a decision rule allowing us to choose between two statistical hypotheses based on sample results.

Definition 4.0.3. (Chi-Square Tests)

Chi-square tests are based on the χ^2 statistic proposed by Karl Pearson. Their main purpose is to compare distributions. These tests can be applied to qualitative or quantitative variables.

There are three types of chi-square tests:

Goodness-of-fit Test, Homogeneity Test, Independence Test.

4.1 Goodness-of-Fit Test

Objective:

Compare an observed sample distribution to a theoretical distribution.

Notation:

- *T_i*: theoretical frequencies
- *O_i*: observed frequencies
- *n*: total number of observations.
- *k*: number of categories.

Steps:

• Formulate hypotheses

 H_0 : The observed distribution matches the theoretical distribution.

 H_1 : The observed distribution differs from the theoretical distribution.

Compute theoretical frequencies

Validity condition: all $T_i \ge 5$.

• Test statistic:

$$\chi_{c}^{2} = \sum_{i=1}^{k} \frac{(O_{i} - T_{i})^{2}}{T_{i}}$$

4 Critical value

Read from the chi-square distribution table with degrees of freedom df = k - 1

$$\chi_T^2 = \chi_{(df, 1-\alpha)}^2$$

Decision

If $\chi_c^2 \le \chi_T^2$ accept H_0 If $\chi_c^2 > \chi_T^2$ reject H_0

Example 4.1.1.

In a maternity ward, out of 100 births, 44 boys and 56 girls were recorded. Is this observation consistent with national statistics indicating proportions of 53% boys and 47% girls?

Solution

Test: Chi-square goodness-of-fit.

1 Formulate hypotheses

 H_0 : The observed distribution matches the national distribution.

 H_1 : The observed distribution is different.

Occupate theoretical frequencies

sex	O_i	T_i
boys	44	53
girls	56	47
total	100	100

all $T_i \ge 5$ so the test is valid.

• Test statistic:

$$\chi_c^2 = \sum_{i=1}^k \frac{(O_i - T_i)^2}{T_i} = \frac{(44 - 53)^2}{53} + \frac{(56 - 47)^2}{47} = 3.25$$

• Critical value :

$$\begin{cases} df = k - 1 = 2 - 1 = 1\\ 1 - \alpha = 1 - 0.05 = 0.95 \end{cases}$$
 so $\chi_T^2 = \chi_{(1;0.95)}^2 = 3.84$

6 Decision

$$\chi_c^2 < \chi_T^2$$
 Accept H_0
Conclusion: The observed distribution matches the national one.

4.2 Homogeneity Test

Objective:

Compare two or more observed distributions from different samples.

Notation:

l: number of rows

c: number of columns

Steps:

0 Formulate hypotheses

 H_0 : The distributions are equivalent.

 H_1 : The distributions are not equivalent.

Compute theoretical frequencies

$$n_i = \sum_{j=1}^{c} O_{ij}$$
 $n_j = \sum_{i=1}^{l} O_{ij}$ $T_{ij} = \frac{n_i n_j}{n_j}$

Validity condition: all $T_{ij} \ge 5$.

- Test statistic: $\chi_c^2 = \sum_{j=1}^c \sum_{i=1}^l \frac{(O_{ij} T_{ij})^2}{T_{ij}}$
- Oritical value:

Read from the chi-square distribution table with degrees of freedom df = (c - 1)(l - 1)

$$\chi_T^2 = \chi_{(df, 1-\alpha)}^2$$

O Decision

If $\chi_c^2 \le \chi_T^2$ accept H_0 If $\chi_c^2 > \chi_T^2$ reject H_0

Example 4.2.1.

Two drugs, A and B, were tested on two patient groups. The results were:

	Symptom Disappeared	Symptoms Persisted	Worsened	Side Effects
Α	100	40	20	30
В	220	80	70	40

Do the two treatments have the same effect? We will take $\alpha = 5\%$

Solution

Test: Chi-square homogeneity test

• Formulate hypotheses

 H_0 : The two treatments are equivalent.

 H_1 : The two treatments are not equivalent.

Ocean Compute theoretical frequencies: (contingency table)

	Symptom Disappeared		Symptoms Persisted		Worsened		Side Effects		total n _i
	O _{ij}	T_{ij}	O _{ij}	T_{ij}	O _{ij}	T _{ij}	O _{ij}	T _{ij}	
Α	100	101.33	40	38	20	28.5	30	22.16	190
В	220	218.66	80	82	70	61.5	40	47.83	410
total n_j	l n _j 320			120	g	90		70	n=600

all $T_i \ge 5$ so the test is valid.

3 *Test statistic:*

$$\chi_c^2 = \sum_{i=1}^l \sum_{j=1}^c \frac{(O_{ij} - T_{ij})^2}{T_{ij}} = \sum_{j=1}^4 \sum_{i=1}^2 \frac{(O_{ij} - T_{ij})^2}{T_{ij}} = 7.94$$

4 *Critical value:*

$$\begin{cases} df = (c-1)(l-1) = (4-1)(2-1) = 3 \\ 1 - \alpha = 1 - 0.05 = 0.95 \end{cases}$$
 so $\chi_T^2 = \chi_{(3;0.95)}^2 = 7.815$

Decision: χ²_c > χ²_T reject H₀
 Conclusion: The two treatments are not equivalent.

4.3 Independence Test

Objective: study the relationship between two variables in the same sample.

Example 4.3.1.

A food poisoning occurred in a primary school. A doctor recorded the following data:

	Sick	Healthy
Ate chocolate ice cream	69	83
Did not eat ice cream	31	17

Is food poisoning linked to eating chocolate ice cream? We will take $\alpha = 5\%$

Solution

Test: Chi-square independence test

• Formulate hypotheses

 H_0 : No association between food poisoning and ice cream consumption. H_1 : There is an association between food poisoning and chocolate ice cream consumption.

G Compute mediencial nequencies. (contingency table	0	Compute theoretic	cal frequencies:	(contingency tab)	le)
---	---	-------------------	------------------	-------------------	-----

	Sick		Healthy		total n_i
	O_{ij}	T_{ij}	O_{ij}	T_{ij}	
Ate chocolate ice cream	69	76	83	76	152
Did not eat ice cream	31	24	17	24	48
total n_j	10	00	1(00	n=200

all $T_{ij} \ge 5$, so the test is valid.

• Test statistic:

$$\chi_c^2 = \sum_{i=1}^l \sum_{j=1}^c \frac{(O_{ij} - T_{ij})^2}{T_{ij}} = \sum_{j=1}^2 \sum_{i=1}^2 \frac{(O_{ij} - T_{ij})^2}{T_{ij}} = 5.4$$

• Critical value:

$$\begin{cases} df = (c-1)(l-1) = (2-1)(2-1) = 1\\ 1-\alpha = 1 - 0.05 = 0.95 \end{cases}$$
 so $\chi_T^2 = \chi_{(1;0.95)}^2 = 3.841$

6 Decision: $\chi_c^2 > \chi_T^2$ reject H_0

Conclusion: There is an association between food poisoning and chocolate ice cream consumption.