SW 5: Pushdown Automata & Algebraic Languages

Exercise 1 Define the pushdown automata recognizing the following languages:

 $L_{1} = \{ a^{i}(ab)^{i}c^{k} | i,k>0 \}$ $L_{2} = \{ wcw^{R} | w \in \{a,b\}^{*} \}$

Exercise 2__Let G be the following grammar, which allows recognizing lists.:

```
\begin{split} & S \rightarrow \{ \text{ Liste } \} \\ & \text{Liste} \rightarrow \text{Liste}, \text{Liste} \, | \, \text{Nb} \\ & \text{Nb} \rightarrow 0 \, | \, 1 \, | \, 0 \, \, \text{Nb} \, | \, 1 \, \, \text{Nb} \end{split}
```

- Give the derivation tree, as well as a left derivation and a right derivation of the word w =

 $\{10, 0, 00\}$

- Show that G is ambiguous

Exercise 3: Transform the following grammar into a reduced and clean grammar without unit rules:.

$$\begin{array}{rcl} S & \rightarrow & AB \mid CA \\ A & \rightarrow & a \mid b \mid \varepsilon \\ B & \rightarrow & BC \mid DB \\ C & \rightarrow & E \mid \varepsilon \\ D & \rightarrow & a \mid d \\ E & \rightarrow & aB \mid c \mid d \mid \varepsilon \end{array}$$

Exercise 4 : Make the following grammars ε-free and non-left-recursive:

1. G12.G23.G34. G4 $S \rightarrow AS / bB$ $S \rightarrow aSSB | ASC | a, A \rightarrow Bac / Bb$ $S \rightarrow Aa / b$ $A \rightarrow a / \varepsilon$ $B \rightarrow a | \varepsilon, B \rightarrow a | \varepsilon, C \rightarrow AC | CB \}$ $B \rightarrow Bc / Ad / \varepsilon$ $A \rightarrow Ac / Sd / \varepsilon$

Exercise 5 : Transform the following grammars into Chomsky Normal Form

$S\toAB$	$S \to Aa \mid B$	S → Aa Bb c
A → Aa b	$A \to Bb \mid Sc \mid \in$	$A \to Bd \mid \epsilon$
$B \to c$	$B \rightarrow d$	$B \rightarrow Ae \mid \epsilon$

Exercise 6: Eliminate left recursion from the following grammars

Exercise 7 Convert the following grammars to Greibach Normal Form

G1 S \rightarrow BA	G2	$S \rightarrow AB \mid a$	G3	$S \rightarrow AB \mid a$	G4	$S \rightarrow CA \mid BB$
A →BB a		A→BS		A →BS b		B →SB b
$B \rightarrow AA$		$B \rightarrow AA b$		B→SA a		A→a
						$C \rightarrow b$

Exercise 8:

Prove that the languages above are not algebraic

- a. $L = \{a^i b^j c^k \mid i < j < k\}$
- b. $L = \{a^i b^j | j = i^2\}$